Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pressure-driven flow in a thin pipe with rough boundary
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
2020 (engelsk)Inngår i: Zeitschrift für Angewandte Mathematik und Physik, ISSN 0044-2275, E-ISSN 1420-9039, Vol. 71, nr 4, artikkel-id 138Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Stationary incompressible Newtonian fluid flow governed by external force and external pressure is considered in a thin rough pipe. The transversal size of the pipe is assumed to be of the order ε, i.e. cross-sectional area is about ε2, and the wavelength in longitudinal direction is modeled by a small parameter μ. Under general assumption ε, μ→0, the Poiseuille law is obtained. Depending on ε, μ-relation (ε«μ, ε/μ ~ constant, ε»μ), different cell problems describing the local behavior of the fluid are deduced and analyzed. Error estimates are presented.

sted, utgiver, år, opplag, sider
Springer Nature, 2020. Vol. 71, nr 4, artikkel-id 138
Emneord [en]
Fluid mechanics, Incompressible viscous flow, Stokes equation, Mixed boundary condition, Stress boundary condition, Neumann condition, Thin pipe, Rough pipe
HSV kategori
Forskningsprogram
Tillämpad matematik
Identifikatorer
URN: urn:nbn:se:ltu:diva-80648DOI: 10.1007/s00033-020-01355-zISI: 000556341700001Scopus ID: 2-s2.0-85088569585OAI: oai:DiVA.org:ltu-80648DiVA, id: diva2:1463216
Merknad

Validerad;2020;Nivå 2;2020-09-01 (alebob)

Tilgjengelig fra: 2020-09-01 Laget: 2020-09-01 Sist oppdatert: 2021-04-01bibliografisk kontrollert
Inngår i avhandling
1. Pressure-driven flows in thin and porous domains
Åpne denne publikasjonen i ny fane eller vindu >>Pressure-driven flows in thin and porous domains
2021 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The present thesis is devoted to the derivation of Darcy's law for incompressible viscous fluid flows in perforated and thin domains by means of homogenization techniques. 

 The problem of describing asymptotic flows in porous/thin domains occurs in the study of various physical phenomena such as filtration in sandy soils, blood circulation in capillaries, lubrication and heationg/cooling processes. In all such cases flow characteristics are obviously dependent of microstructure of the fluid domains. However, in the most of practical applications the significant role is played by average (or integral) quantities, such as permeability and macroscopic pressure. In order to obtain them there exist several mathematical approaches collectively referred to as homogenisation theory. 

 This thesis consists of five papers. Papers I and V represent the general case of thin porous domains where both parameters ε - the period of perforation, and δ - the thickness of the domain, are involved. We assume that the flow is governed by the Stokes equation and driven by an external pressure, i.e. the normal stress is prescribed on a part of the boundary and no-slip is assumed on the rest of the boundary. Let us note that from the physical point of view such mixed boundary condition is natural whereas in mathematical context it appears quite seldom and raises therefore some essential difficulties in analytical theory. 

Depending on the limit value λ of mutual δ / ε -ratio, a form of Darcy's law appears as both δ and ε tend to zero. The three principal cases namely are very thin porous medium (λ =0), proportionally thin porous medium (0< λ<∞) and homogeneously thin porous medium (λ =∞). 

 The results are obtained first by using the formal method of multiple scale asymptotic expansions (Paper I) and then rigorously justified in Paper V. Various aspects of such justification (a priori estimates, two-scale and strong convergence results) are done separately for porous media (Paper II) and thin domains (Paper III). The vast part of Papers II and III is devoted to the adaptation of already existing results for systems that satisfy to no-slip condition everywhere on the boundary to the case of mixed boundary condition mentioned above. 

Alternative justification approach (asymptotic expansion method accomplished by error estimates) is presented in Paper IV for flows in thin rough pipes. 

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2021
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
HSV kategori
Forskningsprogram
Tillämpad matematik
Identifikatorer
urn:nbn:se:ltu:diva-83474 (URN)978-91-7790-797-8 (ISBN)978-91-7790-798-5 (ISBN)
Disputas
2021-05-27, E632, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2021-04-06 Laget: 2021-04-01 Sist oppdatert: 2021-05-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Miroshnikova, Elena

Søk i DiVA

Av forfatter/redaktør
Miroshnikova, Elena
Av organisasjonen
I samme tidsskrift
Zeitschrift für Angewandte Mathematik und Physik

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 80 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf