Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Understanding of Blast Furnace Performance with Biomass Introduction
Metallurgy Department, Swerim, 974 37 Luleå, Sweden.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi. Metallurgy Department, Swerim, 974 37 Luleå, Sweden.ORCID-id: 0000-0003-3363-351X
Relitor, 973 34 Luleå, Sweden.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
2021 (engelsk)Inngår i: Minerals, E-ISSN 2075-163X, Vol. 11, nr 2, artikkel-id 157Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The blast furnace still dominates the production and supply of metallic units for steelmaking. Coke and coal used in the blast furnace contribute substantially to CO2 emissions from the steel sector. Therefore, blast furnace operators are making great efforts to lower the fossil CO2 emissions and transition to fossil-free steelmaking. In previous studies the use of pre-treated biomass has been indicated to have great potential to significantly lower fossil CO2 emissions. Even negative CO2 emission can be achieved if biomass is used together with carbon capture and storage. Blast furnace conditions will change at substantial inputs of biomass but can be defined through model calculations when using a model calibrated with actual operational data to define the key blast furnace performance parameters. To understand the effect, the modelling results for different biomass cases are evaluated in detail and the overall performance is visualised in Rist- and carbon direct reduction rate (CDRR) diagrams. In this study injection of torrefied biomass or charcoal, top charging of charcoal as well as the use of a combination of both methods are evaluated in model calculations. It was found that significant impact on the blast furnace conditions by the injection of 142 kg/tHM of torrefied biomass could be counteracted by also top-charging 30 kg/tHM of charcoal. With combined use of the latter methods, CO2-emissions can be potentially reduced by up to 34% with moderate change in blast furnace conditions and limited investments.

sted, utgiver, år, opplag, sider
MDPI, 2021. Vol. 11, nr 2, artikkel-id 157
Emneord [en]
bio-coal, blast furnace, heat and mass balance, Rist diagram, CDRR diagram
HSV kategori
Forskningsprogram
Processmetallurgi; Centrumbildning - Centrum för avancerad gruvteknik och metallurgi (CAMM)
Identifikatorer
URN: urn:nbn:se:ltu:diva-82826DOI: 10.3390/min11020157ISI: 000622847500001Scopus ID: 2-s2.0-85100178644OAI: oai:DiVA.org:ltu-82826DiVA, id: diva2:1526892
Forskningsfinansiär
Luleå University of Technology
Merknad

Validerad;2021;Nivå 2;2021-02-09 (alebob)

Tilgjengelig fra: 2021-02-09 Laget: 2021-02-09 Sist oppdatert: 2024-01-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Sundqvist Ökvist, LenaBjörkman, Bo

Søk i DiVA

Av forfatter/redaktør
Sundqvist Ökvist, LenaBjörkman, Bo
Av organisasjonen
I samme tidsskrift
Minerals

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 153 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf