Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Blast-induced ground vibration prediction in granite quarries: An application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN
Department of Energy Resources Engineering, Inha University, Incheon 22212, Republic of Korea. Department of Mining Engineering, Federal University of Technology, Akure, Nigeria.
Department of Energy Resources Engineering, Inha University, Incheon 22212, Republic of Korea.
Department of Physics, Federal University, Oye-Ekiti, Nigeria.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Department of Mining Engineering, Federal University of Technology, Akure, Nigeria.ORCID-id: 0000-0002-3838-8472
2021 (engelsk)Inngår i: International Journal of Mining Science and Technology, ISSN 2095-2686, Vol. 31, nr 2, s. 265-277Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Blasting of rocks has intrinsic environmental impacts such as ground vibration, which can interfere with the safety of lives and property. Hence, accurate prediction of the environmental impacts of blasting is imperative as the empirical models are not accurate as evident in the literature. Therefore, there is need to consider some robust predictive models for accurate prediction results. Gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS), and sine cosine algorithm optimized artificial neural network (SCA-ANN) models are proposed for predicting the blast-initiated ground vibration in five granite quarries. The input parameters into the models are the distance from the point of blasting to the point of measurement (D), the weight of charge per delay (W), rock density (ρ), and the Schmidt rebound hardness (SRH) value while peak particle velocity (PPV) is the targeted output. 100 datasets were used in developing the proposed models. The performance of the proposed models was examined using the coefficient of determination (R2) and error analysis. The R2 values obtained for the GEP, ANFIS, and SCA-ANN models are 0.989, 0.997, and 0.999, respectively, while their errors are close to zero. The proposed models are compared with an empirical model and are found to outperform the empirical model.

sted, utgiver, år, opplag, sider
Elsevier, 2021. Vol. 31, nr 2, s. 265-277
Emneord [en]
Artificial intelligence, Blasting, Rock density, Comminution, Environmental impacts, Sensitivity analysis
HSV kategori
Forskningsprogram
Gruv- och berganläggningsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-83001DOI: 10.1016/j.ijmst.2021.01.007ISI: 000623878300003Scopus ID: 2-s2.0-85101019372OAI: oai:DiVA.org:ltu-83001DiVA, id: diva2:1529422
Merknad

Validerad;2021;Nivå 2;2021-03-02 (alebob);

Finansiär: Ministry of Science, Korea; ICT (2019H1D3A1A01102993)

Tilgjengelig fra: 2021-02-18 Laget: 2021-02-18 Sist oppdatert: 2021-04-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Idris, Musa Adebayo

Søk i DiVA

Av forfatter/redaktør
Idris, Musa Adebayo
Av organisasjonen
I samme tidsskrift
International Journal of Mining Science and Technology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 255 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf