Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Current Status and Performance Analysis of Table Recognition in Document Images with Deep Neural Networks
German Research Center for Artificial Intelligence, 67663 Kaiserslautern, Germany; Department of Computer Science, University of Kaiserslautern, 67663 Kaiserslautern, Germany; Mindgrage, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0003-4029-6574
German Research Center for Artificial Intelligence, 67663 Kaiserslautern, Germany; Department of Computer Science, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
Bilojix Soft Technologies, Bahawalpur, Pakistan.
Vise andre og tillknytning
2021 (engelsk)Inngår i: IEEE Access, E-ISSN 2169-3536, Vol. 9, s. 87663-87685Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

The first phase of table recognition is to detect the tabular area in a document. Subsequently, the tabular structures are recognized in the second phase in order to extract information from the respective cells. Table detection and structural recognition are pivotal problems in the domain of table understanding. However, table analysis is a perplexing task due to the colossal amount of diversity and asymmetry in tables. Therefore, it is an active area of research in document image analysis. Recent advances in the computing capabilities of graphical processing units have enabled the deep neural networks to outperform traditional state-of-the-art machine learning methods. Table understanding has substantially benefited from the recent breakthroughs in deep neural networks. However, there has not been a consolidated description of the deep learning methods for table detection and table structure recognition. This review paper provides a thorough analysis of the modern methodologies that utilize deep neural networks. Moreover, it presents a comprehensive understanding of the current state-of-the-art and related challenges of table understanding in document images. The leading datasets and their intricacies have been elaborated along with the quantitative results. Furthermore, a brief overview is given regarding the promising directions that can further improve table analysis in document images.

sted, utgiver, år, opplag, sider
IEEE, 2021. Vol. 9, s. 87663-87685
Emneord [en]
Deep neural network, document images, deep learning, performance evaluation, table recognition, table detection, table structure recognition, table analysis
HSV kategori
Forskningsprogram
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-85244DOI: 10.1109/ACCESS.2021.3087865ISI: 000673311500001Scopus ID: 2-s2.0-85111022580OAI: oai:DiVA.org:ltu-85244DiVA, id: diva2:1564177
Merknad

Validerad;2021;Nivå 2;2021-07-14 (johcin)

Tilgjengelig fra: 2021-06-11 Laget: 2021-06-11 Sist oppdatert: 2021-12-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Liwicki, Marcus

Søk i DiVA

Av forfatter/redaktør
Liwicki, Marcus
Av organisasjonen
I samme tidsskrift
IEEE Access

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 177 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf