Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving Reproducible Deep Learning Workflows with DeepDIVA
Document Image and Voice Analysis Group (DIVA), University of Fribourg, Switzerland.
Document Image and Voice Analysis Group (DIVA), University of Fribourg, Switzerland.
Document Image and Voice Analysis Group (DIVA), University of Fribourg, Switzerland.
Document Image and Voice Analysis Group (DIVA), University of Fribourg, Switzerland; Institute for Interactive Technologies (IIT), FHNW University of Applied Sciences and Arts Northwestern Switzerland, Switzerland.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Proceedings 6th Swiss Conference on Data Science: SDS2019, IEEE, 2019, s. 13-18Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The field of deep learning is experiencing a trend towards producing reproducible research. Nevertheless, it is still often a frustrating experience to reproduce scientific results. This is especially true in the machine learning community, where it is considered acceptable to have black boxes in your experiments. We present DeepDIVA, a framework designed to facilitate easy experimentation and their reproduction. This framework allows researchers to share their experiments with others, while providing functionality that allows for easy experimentation, such as: boilerplate code, experiment management, hyper-parameter optimization, verification of data integrity and visualization of data and results. Additionally, the code of DeepDIVA is well-documented and supported by several tutorials that allow a new user to quickly familiarize themselves with the framework.

sted, utgiver, år, opplag, sider
IEEE, 2019. s. 13-18
HSV kategori
Forskningsprogram
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-85985DOI: 10.1109/SDS.2019.00-14ISI: 000502813100003Scopus ID: 2-s2.0-85071363776OAI: oai:DiVA.org:ltu-85985DiVA, id: diva2:1573144
Konferanse
6th Swiss Conference on Data Science (SDS2019), Bern, Switzerland, June 14, 2019
Merknad

ISBN för värdpublikation: 978-1-7281-3105-4;

Finansiär: Swiss National Science Foundation (205120_169618)

Tilgjengelig fra: 2021-06-24 Laget: 2021-06-24 Sist oppdatert: 2021-06-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Liwicki, Marcus

Søk i DiVA

Av forfatter/redaktør
Liwicki, Marcus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 85 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf