Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nanoscale ZnO/α-Fe2O3 Heterostructures: Toward Efficient and Low-Cost Photoanodes for Water Splitting
Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy.
Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy.
Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy.
Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy.
Vise andre og tillknytning
2022 (engelsk)Inngår i: Small Science, E-ISSN 2688-4046, Vol. 2, nr 3, artikkel-id 2100104Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Composite metal oxide semiconductors are promising candidates for photoelectrochemical water splitting (PEC WS) toward environmentally friendly hydrogen production. Among them, ZnO and α-Fe2O3 hold great potential thanks to a series of benefits, including fast charge transport in single-crystalline structures, large surface area and tunable shapes (ZnO), and energy bandgap falling in the visible spectral range (α-Fe2O3). However, both materials present significant drawbacks, which hinder their successful application in high-efficiency PEC WS: the wide bandgap of ZnO limits its absorption in the UV range, while the low charge carrier mobility results in heavy recombination losses in α-Fe2O3 during charge collection. The synthesis of ZnO/hematite composites has recently proven to be an effective approach to improve the overall WS performances. In this review, the recent developments on the application of different morphologies (0D, 1D, 2D, and 3D structures) for PEC WS are illustrated, analyzing the role of the shape and morphology in boosting the functional properties, both in single systems and in composite nanostructures. Complex networks show higher photocatalytic efficiency than the single building blocks and, consequently, composite materials exhibit higher performances. Possible paths for the development of an effective lab-to-fab transition based on application of ZnO/α-Fe2O3 composite structures are also suggested.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2022. Vol. 2, nr 3, artikkel-id 2100104
HSV kategori
Forskningsprogram
Experimentell fysik
Identifikatorer
URN: urn:nbn:se:ltu:diva-88224DOI: 10.1002/smsc.202100104ISI: 000774259700007Scopus ID: 2-s2.0-85160523912OAI: oai:DiVA.org:ltu-88224DiVA, id: diva2:1617306
Forskningsfinansiär
The Kempe FoundationsKnut and Alice Wallenberg Foundation
Merknad

Validerad;2022;Nivå 2;2022-04-13 (johcin)

Tilgjengelig fra: 2021-12-06 Laget: 2021-12-06 Sist oppdatert: 2023-10-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Vomiero, Alberto

Søk i DiVA

Av forfatter/redaktør
Vomiero, Alberto
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 115 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf