Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using an explainable artificial intelligence
Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran.
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.ORCID-id: 0000-0002-2265-6321
2021 (engelsk)Inngår i: Results in Geophysical Sciences, ISSN 2666-8289, Vol. 8, artikkel-id 100034Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The durability of rocks is a substantial rock property that has to be considered for designing geotechnical structures. Uniaxial compressive strength (UCS) and Young's modulus (E) are key indexes for measuring rocks’ durability. Several types of artificial intelligence (AI) methods have been used for modeling these key indexes; however, surprisingly, no explainable AI (XAI) has been considered for their model developments. An XAI is a model whose assessment is not a black box, and humans could understand its problem solution approach. This study has filled this gap and presented SHAP (Shapley Additive Explanations) as one of the most recent XAI methods for modeling UCS, and E. SHAP value could successfully illustrate intercorrelations between rock properties (porosity, point load index, P-wave velocity, and Schmidt hammer rebound number) and their representative UCS and E for each individual record and also together as variables. Results indicated that P-wave velocity has the highest importance for UCS and E prediction. eXtreme gradient boosting (XGBoost) was used as a solid predictive AI system for UCS and E estimation. Outcomes (R2> 0.99) confirmed the high accuracy of the SHAP-XGBoost model comparing with other typical AI models (Random Forest and Support Vector Regression). These results indicated XAI could be considered for illustrating complicated relationships within rock mechanics and energy-resource developments.

sted, utgiver, år, opplag, sider
Elsevier, 2021. Vol. 8, artikkel-id 100034
Emneord [en]
Shap, Rock properties, Xgboost, Durability, Machine learning
HSV kategori
Forskningsprogram
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-88275DOI: 10.1016/j.ringps.2021.100034OAI: oai:DiVA.org:ltu-88275DiVA, id: diva2:1619250
Merknad

Godkänd;2021;Nivå 0;2021-12-13 (beamah)

Tilgjengelig fra: 2021-12-13 Laget: 2021-12-13 Sist oppdatert: 2023-09-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Chelgani, S. Chehreh

Søk i DiVA

Av forfatter/redaktør
Chelgani, S. Chehreh
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 66 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf