Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
EmmDocClassifier: Efficient Multimodal Document Image Classifier for Scarce Data
Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0001-6158-3543
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0003-4029-6574
Vise andre og tillknytning
2022 (engelsk)Inngår i: Applied Sciences, E-ISSN 2076-3417, Vol. 12, nr 3, artikkel-id 1457Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Document classification is one of the most critical steps in the document analysis pipeline. There are two types of approaches for document classification, known as image-based and multimodal approaches. Image-based document classification approaches are solely based on the inherent visual cues of the document images. In contrast, the multimodal approach co-learns the visual and textual features, and it has proved to be more effective. Nonetheless, these approaches require a huge amount of data. This paper presents a novel approach for document classification that works with a small amount of data and outperforms other approaches. The proposed approach incorporates a hierarchical attention network (HAN) for the textual stream and the EfficientNet-B0 for the image stream. The hierarchical attention network in the textual stream uses dynamic word embedding through fine-tuned BERT. HAN incorporates both the word level and sentence level features. While earlier approaches rely on training on a large corpus (RVL-CDIP), we show that our approach works with a small amount of data (Tobacco-3482). To this end, we trained the neural network at Tobacco-3482 from scratch. Therefore, we outperform the state-of-the-art by obtaining an accuracy of 90.3%. This results in a relative error reduction rate of 7.9%.

sted, utgiver, år, opplag, sider
MDPI, 2022. Vol. 12, nr 3, artikkel-id 1457
Emneord [en]
BERT, document image classification, EfficientNet, fine-tuned BERT, hierarchical attention networks, Multimodal, RVL-CDIP, two-stream, Tobacco-3482
HSV kategori
Forskningsprogram
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-89454DOI: 10.3390/app12031457ISI: 000760057200001Scopus ID: 2-s2.0-85123633245OAI: oai:DiVA.org:ltu-89454DiVA, id: diva2:1642613
Merknad

Validerad;2022;Nivå 2;2022-03-07 (johcin)

Tilgjengelig fra: 2022-03-07 Laget: 2022-03-07 Sist oppdatert: 2023-09-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Mokayed, HamamLiwicki, Marcus

Søk i DiVA

Av forfatter/redaktør
Mokayed, HamamLiwicki, MarcusAfzal, Muhammad Zeshan
Av organisasjonen
I samme tidsskrift
Applied Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 151 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf