Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
FilipN@LT-EDI-ACL2022-Detecting signs of Depression from Social Media: Examining the use of summarization methods as data augmentation for text classification
Luleå tekniska universitet, Institutionen för system- och rymdteknik.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0002-0546-116x
2022 (engelsk)Inngår i: Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion / [ed] Bharathi Raja Chakravarthi, B Bharathi, John P McCrae, Manel Zarrouk, Kalika Bali, Paul Buitelaar, Association for Computational Linguistics , 2022, s. 283-286Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Depression is a common mental disorder that severely affects the quality of life, and can lead to suicide. When diagnosed in time, mild, moderate, and even severe depression can be treated. This is why it is vital to detect signs of depression in time. One possibility for this is the use of text classification models on social media posts. Transformers have achieved state-of-the-art performance on a variety of similar text classification tasks. One drawback, however, is that when the dataset is imbalanced, the performance of these models may be negatively affected. Because of this, in this paper, we examine the effect of balancing a depression detection dataset using data augmentation. In particular, we use abstractive summarization techniques for data augmentation. We examine the effect of this method on the LT-EDI-ACL2022 task. Our results show that when increasing the multiplicity of the minority classes to the right degree, this data augmentation method can in fact improve classification scores on the task.

sted, utgiver, år, opplag, sider
Association for Computational Linguistics , 2022. s. 283-286
Serie
2022.ltedi-1
HSV kategori
Forskningsprogram
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-90881ISI: 000847166600041Scopus ID: 2-s2.0-85137459193OAI: oai:DiVA.org:ltu-90881DiVA, id: diva2:1663557
Konferanse
Second Workshop on Language Technology for Equality, Diversity, Inclusion (LT-EDI-2022), May 27, 2022, Dublin, Ireland
Tilgjengelig fra: 2022-06-02 Laget: 2022-06-02 Sist oppdatert: 2022-09-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Scopushttps://aclanthology.org/2022.ltedi-1.41

Person

Kovács, György

Søk i DiVA

Av forfatter/redaktør
Kovács, György
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 133 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf