Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time Series Recovery Using Adjacent Channel Data Based on LSTM: A Case Study of Subway Vibrations
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Beijing Key Laboratory of Track Engineering, Beijing Jiaotong University, Beijing 100044, China.ORCID-id: 0000-0002-4283-0913
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
Beijing Municipal Institute of City Planning and Design, Beijing 100045, China.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik. School of Innovation, Design and Engineering, Mälardalen University, 63220 Eskilstuna, Sweden.ORCID-id: 0000-0002-7458-6820
Vise andre og tillknytning
2022 (engelsk)Inngår i: Applied Sciences, E-ISSN 2076-3417, Vol. 12, nr 22, artikkel-id 11497Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Multi-sensor technology has been widely applied in the condition monitoring of rail transit. In practice, the data of some channels in the high channel counts are often abnormal or lost due to the abnormality and damage of the sensors, thus resulting in a large amount of data waste. A method for the data recovery of lost channels by using adjacent channel data is proposed to solve this problem. Based on the LSTM network algorithm, a data recovery model is established based on the “sequence-to-sequence” regression analysis of adjacent channel data. Taking the measured vibration data of a subway as an example, the network is trained with multi-channel measured data to recover the lost channel data of time-series characteristics. The results show that this multi-channel data recovery model is feasible, and the accuracy is up to 98%. This method can also further reduce the number of channels that need to be collected.

sted, utgiver, år, opplag, sider
MDPI, 2022. Vol. 12, nr 22, artikkel-id 11497
Emneord [en]
multi-channel data, time-series recovery, neural network, regression analysis, data recovery, time domain, frequency domain
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-94135DOI: 10.3390/app122211497ISI: 000887061600001Scopus ID: 2-s2.0-85142849504OAI: oai:DiVA.org:ltu-94135DiVA, id: diva2:1711417
Merknad

Validerad;2022;Nivå 2;2022-11-21 (sofila);

Funder: Beijing Nova Program (Z191100001119126); the Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety (R202101); the Fundamental Research Funds for the Central Universities (2020JBM049); the 111 Project (B20040)

Tilgjengelig fra: 2022-11-17 Laget: 2022-11-17 Sist oppdatert: 2023-05-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Lin, Jing

Søk i DiVA

Av forfatter/redaktør
Xin, TaoLin, Jing
Av organisasjonen
I samme tidsskrift
Applied Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 117 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf