Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Deep Learning for Modeling of Sound Pressure Fields of Real-World Ultrasound Transducers
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-0726-065x
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-6216-6132
2022 (engelsk)Inngår i: 2022 IEEE International Ultrasonics Symposium (IUS), IEEE, 2022Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

There are several freely available toolboxes for modeling the sound pressure field of ultrasound transducers and transducer arrays (e.g., Field II, k-Wave, and DREAM, etc.). These model the beam patterns, or how the ultrasound pulse changes depending on where we observe it, i.e., they model the spatial impulse response of the transducers. Normally, the transmitted pulse is not modeled using these toolboxes, but instead it is assumed that this pulse shape is known. Also, the models are based on assumption of an ideal behavior of the transducers, which is not necessarily the case for a real-world transducers. As a consequence, fitting these models to real measurement data, in order for them to mimic the individual transducer available in the lab, is not generally not possible with any numerical accuracy. In this paper we show, instead, how a deep learning approach can be adopted to train a model that with numerical accuracy models an transducer individual. We compare the proposed technique with real measurements and models using the Field II toolbox and show that for the actual transducer at hand, the deep learning approach outperforms the results from Field II.

sted, utgiver, år, opplag, sider
IEEE, 2022.
Serie
IEEE International Ultrasonics Symposium, ISSN 1948-5719, E-ISSN 1948-5727
Emneord [en]
Ultrasound imaging, Spatial impulse response (SIR), Deep neural networks, Sound pressure field
HSV kategori
Forskningsprogram
Signalbehandling
Identifikatorer
URN: urn:nbn:se:ltu:diva-94159DOI: 10.1109/IUS54386.2022.9958700ISI: 000896080400493Scopus ID: 2-s2.0-85143822050OAI: oai:DiVA.org:ltu-94159DiVA, id: diva2:1712066
Konferanse
2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10-13 October, 2022
Merknad

ISBN for host publication: 978-1-6654-6657-8

Tilgjengelig fra: 2022-11-20 Laget: 2022-11-20 Sist oppdatert: 2023-09-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Gupta, PayalCarlson, Johan E.

Søk i DiVA

Av forfatter/redaktør
Gupta, PayalCarlson, Johan E.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 260 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf