Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine Learning-Based Delineation of Geodomain Boundaries: A Proof-of-Concept Study Using Data from the Witwatersrand Goldfields
Geological Survey of Canada, 601 Booth Street, Ottawa, ON, K1A 0E8, Canada; Wits Mining Institute, University of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg, 2000, South Africa.ORCID-id: 0000-0002-3952-3728
Wits Mining Institute, University of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg, 2000, South Africa.
Geological Survey of Canada, 601 Booth Street, Ottawa, ON, K1A 0E8, Canada; Wits Mining Institute, University of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg, 2000, South Africa.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi. School of Chemistry, University of Lincoln, LN6 7TS, Lincoln, United Kingdom.ORCID-id: 0000-0002-5228-3888
Vise andre og tillknytning
2023 (engelsk)Inngår i: Natural Resources Research, ISSN 1520-7439, E-ISSN 1573-8981, Vol. 32, nr 3, s. 879-900Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Machine-aided geological interpretation provides an opportunity for rapid and data-driven decision-making. In disciplines such as geostatistics, the integration of machine learning has the potential to improve the reliability of mineral resources and ore reserve estimates. In this study, inspired by existing geostatistical approaches that use radial basis functions to delineate domain boundaries, we reformulate the problem into a machine learning task for automated domain boundary delineation to partition the orebody. We use an actual dataset from an operating mine (Driefontein gold mine, Witwatersrand Basin in South Africa) to showcase our new method. Using various machine learning algorithms, domain boundaries were created. We show that based on a combination of in-discipline requirements and heuristic reasoning, some algorithms/models may be more desirable than others, beyond merely cross-validation performance metrics. In particular, the support vector machine algorithm yielded simple (low boundary complexity) but geologically realistic and feasible domain boundaries. In addition to the empirical results, the support vector machine algorithm is also functionally the most resemblant of current approaches that makes use of radial basis functions. The delineated domains were subsequently used to demonstrate the effectiveness of domain delineation by comparing domain-based estimation versus non-domain-based estimation using an identical automated workflow. Analysis of estimation results indicate that domain-based estimation is more likely to result in better metal reconciliation as compared with non-domained based estimation. Through the adoption of the machine learning framework, we realized several benefits including: uncertainty quantification; domain boundary complexity tuning; automation; dynamic updates of models using new data; and simple integration with existing machine learning-based workflows.

sted, utgiver, år, opplag, sider
Springer Nature, 2023. Vol. 32, nr 3, s. 879-900
Emneord [en]
Domain delineation, Geodomains, Geometallurgy, Gold deposits, Machine learning, Resource estimation, Spatial data analytics
HSV kategori
Forskningsprogram
Mineralteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-95861DOI: 10.1007/s11053-023-10159-7ISI: 000942687400001Scopus ID: 2-s2.0-85149260078OAI: oai:DiVA.org:ltu-95861DiVA, id: diva2:1742923
Merknad

Validerad;2023;Nivå 2;2023-07-20 (sofila);

Funder: Department of Science and Innovation (DSI)-National Research Foundation (NRF) Thuthuka Grant (UID: 121973); DSI-NRF CIMERA; Wits Mining Institute (WMI)

Tilgjengelig fra: 2023-03-13 Laget: 2023-03-13 Sist oppdatert: 2023-07-20bibliografisk kontrollert

Open Access i DiVA

fulltext(5888 kB)194 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 5888 kBChecksum SHA-512
8751ee638501eb78d182f01e8e58ecaca07208c78f3a20e72440e503ba25d49d42bfb964943689d177d3797caf0e0fe87cf8b317ab2de22dd72d54e12469eac9
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Ghorbani, Yousef

Søk i DiVA

Av forfatter/redaktør
Zhang, Steven E.Ghorbani, Yousef
Av organisasjonen
I samme tidsskrift
Natural Resources Research

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 288 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 281 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf