Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptive Control of Euler-Lagrange Systems under Time-varying State Constraints without a Priori Bounded Uncertainty
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-1883-7912
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-1437-1809
Robotics Research Center, International Institute of Information Technology, Hyderabad, India.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-0126-1897
2023 (engelsk)Inngår i: 22nd IFAC World Congress 2023: Proceedings / [ed] Hideaki Ishii; Yoshio Ebihara; Jun-ichi Imura; Masaki Yamakita, Elsevier, 2023, Vol. 56, s. 3360-3365Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this article, a novel adaptive controller is designed for Euler-Lagrangian systems under predefined time-varying state constraints. The proposed controller could achieve this objective without a priori knowledge of system parameters and, crucially, of state-dependent uncertainties. The closed-loop stability is verified using the Lyapunov method, while the overall efficacy of the proposed scheme is verified using a simulated robotic arm compared to the state of the art.

sted, utgiver, år, opplag, sider
Elsevier, 2023. Vol. 56, s. 3360-3365
Serie
IFAC-PapersOnLine, ISSN 2405-8963 ; 2
Emneord [en]
Adaptive control, barrier Lyapunov function, Euler-Lagrangian system
HSV kategori
Forskningsprogram
Robotik och artificiell intelligens
Identifikatorer
URN: urn:nbn:se:ltu:diva-101992DOI: 10.1016/j.ifacol.2023.10.1482ISI: 001196709200045Scopus ID: 2-s2.0-85183649091OAI: oai:DiVA.org:ltu-101992DiVA, id: diva2:1808698
Konferanse
22nd World Congress of the International Federation of Automatic Control - IFAC World Congress, 2023, July 9-14, 2023, Yokohama, Japan
Forskningsfinansiär
EU, Horizon 2020, 953454, AERO-TRAIN
Merknad

Full text license: CC BY-NC-ND

Tilgjengelig fra: 2023-10-31 Laget: 2023-10-31 Sist oppdatert: 2025-02-09bibliografisk kontrollert
Inngår i avhandling
1. Adaptive control for robots to handle uncertainties, delays and state constraints
Åpne denne publikasjonen i ny fane eller vindu >>Adaptive control for robots to handle uncertainties, delays and state constraints
2023 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The stability and safety of robotic systems are heavily impacted by delays and parametric uncertainties due to external disturbances, modeling inaccuracies, reaction forces, and variations in dynamics. This work addresses the effects of parametric uncertainties in the application of payload transportation by robotic systems that involve time delays and state constraints. The problem is split into two research questions: control of a quadrotor UAV in the presence of delays and control of robotic systems with state constraints.

The first two papers explore the approaches for remotely operated quadrotors in the presence of delays and uncertainties. Specifically, the first paper surveys the existing methods for controlling a payload-carrying UAV and further presents a class of control techniques in theory that focus on time-delayed systems. The second paper proposes an adaptive control solution for the tracking control of a quadrotor UAV to transport various unknown payloads in the presence of unknown time-varying delays. The proposed controller is robust to modeling uncertainties and does not require knowledge of the uncertainties' bounds. The performance of the controller is verified on a MATLAB-SIMULINK simulated environment.

The final three papers deal with enforcing state constraints on tracking control to ensure the safety of the robots in the presence of parametric uncertainties. The third paper exploits state constraints in the post-grasping scenario of the space debris disposal application. This work proposes a robust control for a space robot to follow the desired trajectory without any violation to safely grasp, carry, and release unknown payloads in their respective regions. The controller is tested in a MATLAB-SIMULINK environment with the dynamics of a planar space robot. The fourth paper introduces an adaptive control technique without any a priori knowledge of the system dynamics or the bounds of uncertainties to impose state constraints in control. The proposed controller is designed for a generic Euler-Lagrangian system in the presence of parametric uncertainties, where the state-dependent nature of the uncertainties introduces unboundedness in the overall uncertainty. The controller is validated in simulation using a robotic manipulator in a pick-and-place operation. The final paper proposes an adaptive controller for the tracking control of an experimental planar space robot. The proposed controller enforces constraints on the robot's states and their derivatives on the tracking control for transporting different payloads without any knowledge of the dynamics of the robot or the bounds of the uncertainties. The controller is validated on the experimental space robot.

The stability of the proposed controllers is studied analytically using the Lyapunov theory. The results are presented with various plots and numerically analyzed on the metrics of root mean squared errors and peak errors.

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2023
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Emneord
adaptive control, barrier funciton, nonlinear control
HSV kategori
Forskningsprogram
Robotik och artificiell intelligens
Identifikatorer
urn:nbn:se:ltu:diva-101993 (URN)978-91-8048-424-4 (ISBN)978-91-8048-425-1 (ISBN)
Presentation
2023-12-01, A1545, Luleå University of Technology, Sweden, Luleå, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-11-01 Laget: 2023-10-31 Sist oppdatert: 2025-02-09bibliografisk kontrollert

Open Access i DiVA

fulltext(1072 kB)46 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 1072 kBChecksum SHA-512
ef04e595ffd2cc8963a6b1f61597faaed4dd0f70dde77c4f67111dbd98c9127cf52953e2ec7a0afc5e09ebe6f09f099b56d177ab8012743c54266296334f88a7
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Sankaranarayanan, Viswa NarayananSatpute, Sumeet GajananNikolakopoulos, George

Søk i DiVA

Av forfatter/redaktør
Sankaranarayanan, Viswa NarayananSatpute, Sumeet GajananNikolakopoulos, George
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 46 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 122 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf