Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards End-to-End Semi-Supervised Table Detection with Deformable Transformer
Department of Computer Science, Technical University of Kaiserslautern, 67663, Kaiserslautern, Germany; Mindgarage, Technical University of Kaiserslautern, 67663, Kaiserslautern, Germany; German Research Institute for Artificial Intelligence (DFKI), 67663, Kaiserslautern, Germany.
Department of Computer Science, Technical University of Kaiserslautern, 67663, Kaiserslautern, Germany; Mindgarage, Technical University of Kaiserslautern, 67663, Kaiserslautern, Germany; German Research Institute for Artificial Intelligence (DFKI), 67663, Kaiserslautern, Germany.
Department of Computer Science, Technical University of Kaiserslautern, 67663, Kaiserslautern, Germany; Mindgarage, Technical University of Kaiserslautern, 67663, Kaiserslautern, Germany; German Research Institute for Artificial Intelligence (DFKI), 67663, Kaiserslautern, Germany.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB.ORCID-id: 0000-0003-4029-6574
Vise andre og tillknytning
2023 (engelsk)Inngår i: Document Analysis and Recognition - ICDAR 2023, Part II / [ed] Gernot A. Fink, Rajiv Jain, Koichi Kise & Richard Zanibbi, Springer, 2023, s. 51-76Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Table detection is the task of classifying and localizing table objects within document images. With the recent development in deep learning methods, we observe remarkable success in table detection. However, a significant amount of labeled data is required to train these models effectively. Many semi-supervised approaches are introduced to mitigate the need for a substantial amount of label data. These approaches use CNN-based detectors that rely on anchor proposals and post-processing stages such as NMS. To tackle these limitations, this paper presents a novel end-to-end semi-supervised table detection method that employs the deformable transformer for detecting table objects. We evaluate our semi-supervised method on PubLayNet, DocBank, ICADR-19 and TableBank datasets, and it achieves superior performance compared to previous methods. It outperforms the fully supervised method (Deformable transformer) by +3.4 points on 10% labels of TableBank-both dataset and the previous CNN-based semi-supervised approach (Soft Teacher) by +1.8 points on 10% labels of PubLayNet dataset. We hope this work opens new possibilities towards semi-supervised and unsupervised table detection methods.

sted, utgiver, år, opplag, sider
Springer, 2023. s. 51-76
Serie
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN 0302-9743, E-ISSN 1611-3349 ; 14188
Emneord [en]
Deformable Transformer, Semi-Supervised Learning, Table Analysis, Table Detection
HSV kategori
Forskningsprogram
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-103377DOI: 10.1007/978-3-031-41679-8_4ISI: 001346405600004Scopus ID: 2-s2.0-85173579777OAI: oai:DiVA.org:ltu-103377DiVA, id: diva2:1823703
Konferanse
17th International Conference on Document Analysis and Recognition,(ICDAR 2023),San José, CA, United States, August 21-26, 2023
Merknad

ISBN for host publication: 978-3-031-41678-1 (print), 978-3-031-41679-8 (electronic);

Funder: the European project AIRISE (grant ID: 101092312)

Tilgjengelig fra: 2024-01-03 Laget: 2024-01-03 Sist oppdatert: 2025-02-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Liwicki, Marcus

Søk i DiVA

Av forfatter/redaktør
Liwicki, Marcus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 25 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf