Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue with Autonomous Heterogeneous Robotic Systems
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0009-0007-4859-9955
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-8235-2728
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-0126-1897
2023 (engelsk)Inngår i: IECON 2023 - 49th Annual Conference of the IEEE Industrial Electronics Society, Institute of Electrical and Electronics Engineers (IEEE), 2023Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Search and Rescue (SAR) missions in harsh and unstructured Sub-Terranean (Sub-T) environments in the presence of aerosol particles have recently become the main focus in the field of robotics. Aerosol particles such as smoke and dust directly affect the performance of any mobile robotic platform due to their reliance on their onboard perception systems for autonomous navigation and localization in Global Navigation Satellite System (GNSS)-denied environments. Although obstacle avoidance and object detection algorithms are robust to the presence of noise to some degree, their performance directly relies on the quality of captured data by onboard sensors such as Light Detection And Ranging (LiDAR) and camera. Thus, this paper proposes a novel modular agnostic filtration pipeline based on intensity and spatial information such as local point density for removal of detected smoke particles from Point Cloud (PCL) prior to its utilization for collision detection. Furthermore, the efficacy of the proposed framework in the presence of smoke during multiple frontier exploration missions is investigated while the experimental results are presented to facilitate comparison with other methodologies and their computational impact. This provides valuable insight to the research community for better utilization of filtration schemes based on available computation resources while considering the safe autonomous navigation of mobile robots.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2023.
Serie
Annual Conference of Industrial Electronics Society, ISSN 1553-572X, E-ISSN 2577-1647
Emneord [en]
aerosol particles, heterogeneous robotic systems, outlier rejection
HSV kategori
Forskningsprogram
Robotik och artificiell intelligens
Identifikatorer
URN: urn:nbn:se:ltu:diva-103548DOI: 10.1109/IECON51785.2023.10312303Scopus ID: 2-s2.0-85179513884OAI: oai:DiVA.org:ltu-103548DiVA, id: diva2:1825534
Konferanse
49th Annual Conference of the IEEE Industrial Electronics Society (IECON 2023), Singapore, Singapore, October 16-19, 2023
Forskningsfinansiär
EU, Horizon 2020, 101003591 NEX-GEN SIMS
Merknad

ISBN for host publication: 979-8-3503-3183-7 (print), 979-8-3503-3182-0 (electronic)

Tilgjengelig fra: 2024-01-09 Laget: 2024-01-09 Sist oppdatert: 2025-02-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Koval, AntonNikolakopoulos, George

Søk i DiVA

Av forfatter/redaktør
Kyuroson, AlexanderKoval, AntonNikolakopoulos, George
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 111 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf