Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Residual-Enhanced Physics-Guided Machine Learning With Hard Constraints for Subsurface Flow in Reservoir Engineering
State Key Laboratory of Robotics, Shenyang Institute of Automation, Key Laboratory of Networked Control SystemsInstitutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China.
State Key Laboratory of Robotics, Shenyang Institute of Automation, Key Laboratory of Networked Control SystemsInstitutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China.
State Key Laboratory of Robotics, Shenyang Institute of Automation, Key Laboratory of Networked Control SystemsInstitutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.ORCID-id: 0000-0002-9315-9920
2024 (engelsk)Inngår i: IEEE Transactions on Geoscience and Remote Sensing, ISSN 0196-2892, E-ISSN 1558-0644, Vol. 62, artikkel-id 4502209Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
IEEE, 2024. Vol. 62, artikkel-id 4502209
HSV kategori
Forskningsprogram
Kommunikations- och beräkningssystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-104302DOI: 10.1109/TGRS.2024.3357797ISI: 001173250800028Scopus ID: 2-s2.0-85183949404OAI: oai:DiVA.org:ltu-104302DiVA, id: diva2:1838708
Merknad

Validerad;2024;Nivå 2;2024-03-22 (joosat);

Funder: National Natural Science Foundation of China (62203234); State Key Laboratory of Robotics of China (2023-Z03); Natural Science Foundation of Liaoning Province (2023-BS-025); Research Program of Liaoning Liaohe Laboratory (LLL23ZZ-02-02);

Tilgjengelig fra: 2024-02-19 Laget: 2024-02-19 Sist oppdatert: 2024-11-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Vyatkin, Valeriy

Søk i DiVA

Av forfatter/redaktør
Vyatkin, Valeriy
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Geoscience and Remote Sensing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 92 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf