Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhancing Tire Condition Monitoring through Weightless Neural Networks Using MEMS-Based Vibration Signals
School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology, Chennai Campus, Vandalur Kelambakkam Road, Chennai 600127, India.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-4034-8859
School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai Campus, Vandalur Kelambakkam Road, Chennai 600127, India.ORCID-id: 0000-0002-5323-6418
Sustainable Mobility Automobile Research Technology (SMART) Center, Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India.ORCID-id: 0000-0002-0766-119X
Vise andre og tillknytning
2024 (engelsk)Inngår i: Journal of Engineering, ISSN 2314-4904, E-ISSN 2314-4912, artikkel-id 1321775Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Tire pressure monitoring system (TPMS) has a critical role in safeguarding vehicle safety by monitoring tire pressure levels. Keeping the accurate tire pressure is necessary for confirming comfortable driving and safety, and improving fuel consumption. Tire problems can result from various factors, such as road surface conditions, weather changes, and driving activities, emphasizing the importance of systematic tire checks. This study presents a novel method for tire condition monitoring using weightless neural networks (WNN), which mimic neural processes using random-access memory (RAM) components, supporting fast and precise training. Wilkes, Stonham, and Aleksander Recognition Device (WiSARD), a type of WNN, stands out for its capability in classification and pattern recognition, gaining from its ability to avoid repetitive training and residual formation. For vibration data acquisition from tires, cost-effective micro-electro-mechanical system (MEMS) sensors are employed, offering a more economical solution than piezoelectric sensors. This approach yields a variety of features, such as autoregressive moving average (ARMA), statistical and histogram features. The J48 decision tree algorithm plays a critical role in selecting essential features for classification, which are subsequently divided into training and testing sets, crucial for assessing the WiSARD classifier’s efficacy. Hyperparameter optimization of the WNN leads to improved classification accuracy and shorter computation times. In practical tests, the WiSARD classifier, when optimally configured, achieved an impressive 97.92% accuracy with histogram features in only 0.008 seconds, showcasing the capability of WNN to enhance tire technology and the accuracy and efficiency of tire monitoring and maintenance.

sted, utgiver, år, opplag, sider
Hindawi Publishing Corporation, 2024. artikkel-id 1321775
Emneord [en]
tire pressure monitoring system, fault diagnosis, weightless neural network, vibration signals, WiSARD classifier
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-105432DOI: 10.1155/2024/1321775ISI: 001226852500001OAI: oai:DiVA.org:ltu-105432DiVA, id: diva2:1857145
Merknad

Validerad;2024;Nivå 1;2024-05-16 (hanlid);

Full text license: CC BY

Tilgjengelig fra: 2024-05-12 Laget: 2024-05-12 Sist oppdatert: 2024-06-20bibliografisk kontrollert

Open Access i DiVA

fulltext(917 kB)24 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 917 kBChecksum SHA-512
eeb1c354cd99b31e607ec21c9640bcdf3b699a29457a277930cd96a878c7e804738449463dabdfd781b3334197e160ac9371323969af8d4b68bb8973da149eca
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Venkatesh, Sridharan Naveen

Søk i DiVA

Av forfatter/redaktør
Venkatesh, Sridharan NaveenSugumaran, VaithiyanathanPrabhakaranpillai Sreelatha, AnoopMahamuni, Vetri Selvi
Av organisasjonen
I samme tidsskrift
Journal of Engineering

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 24 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 218 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf