Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0009-0007-4859-9955
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-3557-6782
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0003-1437-1809
Vise andre og tillknytning
2024 (engelsk)Inngår i: European Journal of Control, ISSN 0947-3580, E-ISSN 1435-5671, Vol. 80, Part A, artikkel-id 101052Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The recent advances in space technology are focusing on fully autonomous, real-time, long-term orbit management and mission planning for large-scale satellite constellations in Low-Earth Orbit (LEO). Thus, a pioneering approach for autonomous orbital station-keeping has been introduced using a model-free Deep Policy Gradient-based Reinforcement Learning (DPGRL) strategy explicitly tailored for LEO. Addressing the critical need for more efficient and self-regulating orbit management in LEO satellite constellations, this work explores the potential synergy between Deep Reinforcement Learning (DRL) and Neuro-Evolution of Augmenting Topology (NEAT) to optimize station-keeping strategies with the primary goal to empower satellite to autonomously maintain their orbit in the presence of external perturbations within an allowable tolerance margin, thereby significantly reducing operational costs while maintaining precise and consistent station-keeping throughout their life cycle. The study specifically tailors DPGRL algorithms for LEO satellites, considering low-thrust constraints for maneuvers and integrating dense reward schemes and domain-based reward shaping techniques. By showcasing the adaptability and scalability of the combined NEAT and DRL framework in diverse operational scenarios, this approach holds immense promise for revolutionizing autonomous orbit management, paving the way for more efficient and adaptable satellite operations while incorporating the physical constraints of satellite, such as thruster limitations.

sted, utgiver, år, opplag, sider
Elsevier, 2024. Vol. 80, Part A, artikkel-id 101052
Emneord [en]
Deep reinforcement learning, Orbit management, Robotics, Satellite constellation
HSV kategori
Forskningsprogram
Robotik och artificiell intelligens
Identifikatorer
URN: urn:nbn:se:ltu:diva-108432DOI: 10.1016/j.ejcon.2024.101052ISI: 001359335600001Scopus ID: 2-s2.0-85199155625OAI: oai:DiVA.org:ltu-108432DiVA, id: diva2:1886471
Forskningsfinansiär
The European Space Agency (ESA)
Merknad

Validerad;2024;Nivå 2;2024-11-26 (sofila);

Funder: OHB Seden OPTACOM (contract no. OPC-OSE-CC-0536);

Full text license: CC BY

Tilgjengelig fra: 2024-08-01 Laget: 2024-08-01 Sist oppdatert: 2024-12-03bibliografisk kontrollert

Open Access i DiVA

fulltext(2177 kB)37 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2177 kBChecksum SHA-512
bc556631b89857081ec49722277db483e3dc503ac65f77d987d5587c4f5207c5a48c49f0da7659a326142cc3c12ad9af0fd7175ce7ec8f38a9a8b3791afc7ca7
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Banerjee, AvijitSatpute, SumeetNikolakopoulos, George

Søk i DiVA

Av forfatter/redaktør
Kyuroson, AlexanderBanerjee, AvijitTafanidis, Nektarios AristeidisSatpute, SumeetNikolakopoulos, George
Av organisasjonen
I samme tidsskrift
European Journal of Control

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 76 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 189 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf