Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assisted Physical Interaction: Autonomous Aerial Robots with Neural Network Detection, Navigation, and Safety Layers
CATEC, Advanced Center for Aerospace Technologies, Seville, Spain.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-1883-7912
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-9685-1026
Department of Electrical Engineering and Information Technology, PRISMA Lab, University of Naples Federico II, Naples, Italy.
Vise andre og tillknytning
2024 (engelsk)Inngår i: 2024 International Conference on Unmanned Aircraft Systems, ICUAS 2024, IEEE, 2024, s. 1354-1361Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The paper introduces a novel framework for safe and autonomous aerial physical interaction in industrial settings. It comprises two main components: a neural network-based target detection system enhanced with edge computing for reduced onboard computational load, and a control barrier function (CBF)-based controller for safe and precise maneuvering. The target detection system is trained on a dataset under challenging visual conditions and evaluated for accuracy across various unseen data with changing lighting conditions. Depth features are utilized for target pose estimation, with the entire detection framework offloaded into low-latency edge computing. The CBF-based controller enables the UAV to converge safely to the target for precise contact. Simulated evaluations of both the controller and target detection are presented, alongside an analysis of real-world detection performance.

sted, utgiver, år, opplag, sider
IEEE, 2024. s. 1354-1361
Serie
2024 International Conference on Unmanned Aircraft Systems, ICUAS 2024
Emneord [en]
Aerial Physical Interaction, Control Barrier Function, Edge Computing, Neural Network, UAVs
HSV kategori
Forskningsprogram
Robotik och artificiell intelligens
Identifikatorer
URN: urn:nbn:se:ltu:diva-108596DOI: 10.1109/ICUAS60882.2024.10557050ISI: 001259354800145Scopus ID: 2-s2.0-85197440827OAI: oai:DiVA.org:ltu-108596DiVA, id: diva2:1889816
Konferanse
2024 International Conference on Unmanned Aircraft Systems (ICUAS 2024), Chania, Crete, Greece, June 4-7, 2024
Forskningsfinansiär
EU, Horizon 2020, 953454Tilgjengelig fra: 2024-08-16 Laget: 2024-08-16 Sist oppdatert: 2025-02-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Sankaranarayanan, Viswa NarayananSeisa, Achilleas SantiSatpute, Sumeet GajananNikolakopoulos, George

Søk i DiVA

Av forfatter/redaktør
Sankaranarayanan, Viswa NarayananSeisa, Achilleas SantiSatpute, Sumeet GajananNikolakopoulos, George
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 142 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf