Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data Reduction in Proportional Hazards Models Applied to Reliability Prediction of Centrifugal Pumps
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik. Petronor, 48550 Muskiz, Spain.ORCID-id: 0000-0002-4757-4461
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-4107-0991
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0001-8111-6918
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik. Fragum Global, LLC, Mountain View, CA 90012, USA.ORCID-id: 0000-0002-0240-0943
2025 (engelsk)Inngår i: Machines, E-ISSN 2075-1702, Vol. 13, nr 3, artikkel-id 215Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents the use of proportional hazards regression models for predicting the Mean Time Between Failures (MTBF) of centrifugal pumps in the oil and gas industry. To that end, a dataset collected over 8 years including both design and operational variables from 675 pumps in an oil refinery was used to fit statistical models. Parametric and non-parametric transformations and restricted cubic splines were used to fit the covariates, thereby relaxing linearity assumptions and potentiating predictors with strong nonlinear effects on the outcome. Standard Principal Component Analysis (PCA) and sparse robust PCA methods were used for data reduction to simplify the fitted models and minimize overfitting. Models fitted with sparse robust PCA on non-parametrically transformed variables using an additive variance stabilizing (AVAS) method are suggested for further investigation. The complexity of the fitted models was reduced by 85% while at the same time providing for a more robust model as indicated by an improvement of the calibration slope from 0.830 to 0.936 with an essentially stable Akaike information criterion (AIC) (0.34% increase).

sted, utgiver, år, opplag, sider
MDPI, 2025. Vol. 13, nr 3, artikkel-id 215
Emneord [en]
centrifugal pumps, MTBF, API standard, reliability prediction, proportional hazards model, data reduction
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-111941DOI: 10.3390/machines13030215ISI: 001452781700001Scopus ID: 2-s2.0-105001159780OAI: oai:DiVA.org:ltu-111941DiVA, id: diva2:1943414
Merknad

Validerad;2025;Nivå 2;2025-03-10 (u2);

Full text: CC BY license;

Tilgjengelig fra: 2025-03-10 Laget: 2025-03-10 Sist oppdatert: 2025-06-24bibliografisk kontrollert

Open Access i DiVA

fulltext(1962 kB)64 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1962 kBChecksum SHA-512
14c986f2a65c3ba8de354a999f83b042c2538c1fc8b2015093144116ab80b086e7b1b81ebd792c5b40d7fc2543b003f6da4f50ed8975ad5d1697d7b51a28b075
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Vila Forteza, MarcGalar, DiegoKumar, UdayGoebel, Kai

Søk i DiVA

Av forfatter/redaktør
Vila Forteza, MarcGalar, DiegoKumar, UdayGoebel, Kai
Av organisasjonen
I samme tidsskrift
Machines

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 67 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 341 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf