Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulation of metal cutting using the particle finite-element method and a physically based plasticity model
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.ORCID-id: 0000-0003-3865-1426
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.ORCID-id: 0000-0003-0910-7990
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.
Rekke forfattare: 32017 (engelsk)Inngår i: Computational Particle Mechanics, ISSN 2196-4378, Vol. 4, nr 1, s. 35-51Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Metal cutting is one of the most common metal-shaping processes. In this process, specified geometrical and surface properties are obtained through the break-up of material and removal by a cutting edge into a chip. The chip formation is associated with large strains, high strain rates and locally high temperatures due to adiabatic heating. These phenomena together with numerical complications make modeling of metal cutting difficult. Material models, which are crucial in metal-cutting simulations, are usually calibrated based on data from material testing. Nevertheless, the magnitudes of strains and strain rates involved in metal cutting are several orders of magnitude higher than those generated from conventional material testing. Therefore, a highly desirable feature is a material model that can be extrapolated outside the calibration range. In this study, a physically based plasticity model based on dislocation density and vacancy concentration is used to simulate orthogonal metal cutting of AISI 316L. The material model is implemented into an in-house particle finite-element method software. Numerical simulations are in agreement with experimental results, but also with previous results obtained with the finite-element method.

sted, utgiver, år, opplag, sider
Springer, 2017. Vol. 4, nr 1, s. 35-51
HSV kategori
Forskningsprogram
Hållfasthetslära; Materialmekanik
Identifikatorer
URN: urn:nbn:se:ltu:diva-3280DOI: 10.1007/s40571-016-0120-9ISI: 000417457300005Scopus ID: 2-s2.0-85026434550Lokal ID: 1162f8b7-aa09-4110-a750-247255072ce5OAI: oai:DiVA.org:ltu-3280DiVA, id: diva2:976137
Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-06-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Rodriguez Prieto, Juan ManuelJonsén, PärSvoboda, Ales

Søk i DiVA

Av forfatter/redaktør
Rodriguez Prieto, Juan ManuelJonsén, PärSvoboda, Ales
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 413 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf