Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Finite element modelling of superplastic-like forming using a dislocation density-based model for AA5083
Nanyang Technological University.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.ORCID-id: 0000-0002-7298-020X
Nanyang Technological University.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.ORCID-id: 0000-0002-2544-9168
Vise andre og tillknytning
2013 (engelsk)Inngår i: Modelling and Simulation in Materials Science and Engineering, ISSN 0965-0393, E-ISSN 1361-651X, Vol. 21, nr 2, s. 25006-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Superplastic-like forming is a newly improved sheet forming process that combines the mechanical pre-forming (also called hot drawing) with gas-driven blow forming (gas forming). Non-superplastic grade aluminium alloy 5083 (AA5083) was successfully formed using this process. In this paper, a physical-based material model with dislocation density and vacancy concentration as intrinsic foundations was employed. The model describes the overall flow stress evolution of AA5083 from ambient temperature up to 550 °C and strain rates from 10−4 up to 10−1 s−1. Experimental data in the form of stress–strain curves were used for the calibration of the model. The calibrated material model was implemented into simulation to model the macroscopic forming process. Hereby, finite element modelling (FEM) was used to estimate the optimum strain-rate forming path, and experiments were used to validate the model. In addition, the strain-rate controlled forming was conducted for the purpose of maintaining the gas forming with an average strain rate of 2 × 10−3 s−1. The predicted necking areas closely approximate the localized thinning observed in the part. Strain rate gradients as a result of geometric effects were considered to be the main reason accounting for thinning and plastic straining, which were demonstrated during hot drawing and gas forming by simulations.

sted, utgiver, år, opplag, sider
2013. Vol. 21, nr 2, s. 25006-
HSV kategori
Forskningsprogram
Materialmekanik
Identifikatorer
URN: urn:nbn:se:ltu:diva-5723DOI: 10.1088/0965-0393/21/2/025006ISI: 000315186900006Scopus ID: 2-s2.0-84874310241Lokal ID: 3e682280-1d20-4c4b-845f-240c0f0fd861OAI: oai:DiVA.org:ltu-5723DiVA, id: diva2:978598
Merknad
Validerad; 2013; Bibliografisk uppgift: Article no 025006; 20130131 (ysko)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Edberg, JonasLindgren, Lars-Erik

Søk i DiVA

Av forfatter/redaktør
Edberg, JonasLindgren, Lars-Erik
Av organisasjonen
I samme tidsskrift
Modelling and Simulation in Materials Science and Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 294 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf