Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Metadata-Based Data Quality Assessment
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-6135-3008
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0002-0055-2740
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik.ORCID-id: 0000-0003-3827-0295
2016 (engelsk)Inngår i: Vine: The Journal of Information and Knowledge Management Systems, ISSN 0305-5728, E-ISSN 1474-1032, Vol. 46, nr 2, s. 232-250Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

High quality data and data quality assessment can support the decision-makingprocess. In the literature, discussions of the assessment process are mainly focused on theoretical approaches to content analysis or on user evaluations. Metadata is important source for quality information in any database system, however, it is not considered for data quality assessment. Metadata contains information that describes the data in a database, including the constraints and the database schema. High quality data can be produced by designing a database system with accurate metadata descriptions. Having accurate and detailed metadata will reduce the errors in data values which can lead to data quality issues. In this study, data quality assessment model is proposed based on both content and metadata analysis. The model is validated by developing an application tool to assess the quality of the data in a database based on the proposed model. The results show that metadata can provide important information about the quality of the database and its adoption can help togive faster, more accurate and user independent assessment of data quality.

sted, utgiver, år, opplag, sider
2016. Vol. 46, nr 2, s. 232-250
Emneord [en]
Information technology - Computer science
Emneord [sv]
Informationsteknik - Datorvetenskap
HSV kategori
Forskningsprogram
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-7058DOI: 10.1108/VJIKMS-11-2015-0059ISI: 000403823400005Scopus ID: 2-s2.0-85015326022Lokal ID: 55f53188-d739-46ef-bbc6-2a01ff36f251OAI: oai:DiVA.org:ltu-7058DiVA, id: diva2:979945
Merknad

Validerad; 2016; Nivå 1; 20151225 (musalj)

Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Aljumaili, MustafaKarim, RaminTretten, Phillip

Søk i DiVA

Av forfatter/redaktør
Aljumaili, MustafaKarim, RaminTretten, Phillip
Av organisasjonen
I samme tidsskrift
Vine: The Journal of Information and Knowledge Management Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 383 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf