Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gradient concepts for evolution of damage
Department of Aerospace Engineering, Wichita State University.
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
1999 (engelsk)Inngår i: Mechanics of materials (Print), ISSN 0167-6636, E-ISSN 1872-7743, Vol. 31, nr 12, s. 831-860Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

While low-order measures of damage have sufficed to describe the stiffness of bodies with distributed voids or cracks, such as the void volume fraction or the crack density tensor of Vakulenko, A.A., Kachanov, M., 1971., addressing the growth of distributed defects demands a more comprehensive description of the details of defect configuration and size distribution. Moreover, interaction of defects over multiple length scales necessitates a methodology to sort out the change of internal structure associated with these scales. To extend the internal state variable approach to evolution, we introduce the notion of multiple scales at which first and second nearest-neighbor effects of nonlocal character are significant, similar to homogenization theory. Further, we introduce the concept of a cutoff radius for nonlocal action associated with a representative volume element (RVE), which exhibits statistical homogeneity of the evolution, and flux of damage gradients averaged over multiple subvolumes. In this way, we enable a local description at length scales below the RVE. The mean mesoscale gradient is introduced to reflect systematic differences in size distribution and position of damage entities in the evolution process. When such a RVE cannot be defined, the evolution is inherently statistically inhomogeneous at all scales of reasonable dimension, and the concept of macroscale gradients of internal variables is the only recourse besides micromechanics. Based on a series of finite element calculations involving evolution of 2D cracks in brittle elastica arranged in random periodic arrays, we examine the evolution of the mean mesoscale gradients and note some preliminary implications for the utility of such an approach.

sted, utgiver, år, opplag, sider
1999. Vol. 31, nr 12, s. 831-860
Identifikatorer
URN: urn:nbn:se:ltu:diva-9291DOI: 10.1016/S0167-6636(99)00029-0Lokal ID: 7e0fb43f-faa9-4be5-937f-75372317a110OAI: oai:DiVA.org:ltu-9291DiVA, id: diva2:982229
Merknad
Upprättat; 1999; 20130506 (andbra)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-01-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Talreja, Ramesh

Søk i DiVA

Av forfatter/redaktør
Talreja, Ramesh
I samme tidsskrift
Mechanics of materials (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 12 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf