Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data mining of solubility parameters for computational prediction of drug–excipient miscibility
Luleå tekniska universitet, Institutionen för hälsovetenskap, Medicinsk vetenskap.ORCID-id: 0000-0002-6050-0432
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.
Chemistry and Drug Delivery Group, Medway School of Pharmacy, University of Kent.
2014 (engelsk)Inngår i: Drug Development and Industrial Pharmacy, ISSN 0363-9045, E-ISSN 1520-5762, Vol. 40, nr 7, s. 904-909Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Computational data mining is of interest in the pharmaceutical arena for the analysis of massive amounts of data and to assist in the management and utilization of the data. In this study, a data mining approach was used to predict the miscibility of a drug and several excipients, using Hansen solubility parameters (HSPs) as the data set. The K-means clustering algorithm was applied to predict the miscibility of indomethacin with a set of more than 30 compounds based on their partial solubility parameters [dispersion forces , polar forces and hydrogen bonding ]. The miscibility of the compounds was determined experimentally, using differential scanning calorimetry (DSC), in a separate study. The results of the K-means algorithm and DSC were compared to evaluate the K-means clustering prediction performance using the HSPs three-dimensional parameters, the two-dimensional parameters such as volume-dependent solubility and hydrogen bonding , and selected single (one-dimensional) parameters. Using HSPs, the prediction of miscibility by the K-means algorithm correlated well with the DSC results, with an overall accuracy of 94%. The prediction accuracy was the same (94%) when the two-dimensional parameters or the hydrogen-bonding (one-dimensional) parameter were used. The hydrogen-bonding parameter was thus a determining factor in predicting miscibility in such set of compounds, whereas the dispersive and polar parameters had only a weak correlation. The results show that data mining approach is a valuable tool for predicting drug–excipient miscibility because it is easy to use, is time and cost-effective, and is material sparing.

sted, utgiver, år, opplag, sider
2014. Vol. 40, nr 7, s. 904-909
HSV kategori
Forskningsprogram
Hälsovetenskap; Datorstödd maskinkonstruktion
Identifikatorer
URN: urn:nbn:se:ltu:diva-10700DOI: 10.3109/03639045.2013.789906ISI: 000337085500008PubMedID: 23627441Scopus ID: 2-s2.0-84902239752Lokal ID: 98ac2293-85f3-4aff-8d3d-69df46c70977OAI: oai:DiVA.org:ltu-10700DiVA, id: diva2:983646
Merknad
Validerad; 2014; 20130506 (andbra)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Alhalaweh, AmjadAlzghoul, Ahmad

Søk i DiVA

Av forfatter/redaktør
Alhalaweh, AmjadAlzghoul, Ahmad
Av organisasjonen
I samme tidsskrift
Drug Development and Industrial Pharmacy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 419 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf