Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Influence of CO2 line profiles on radiative and radiative-convective equilibrium states of the Venus lower atmosphere
University of Tokyo, Deptartment of Earth & Planetary Science.
Tokyo Gakugei University, Department of Astronomy & Earth Science.
Max-Planck-Institut für Solar System Research.
National Institute for Information & Communication Technology, Applied Electromagnet Research.
Vise andre og tillknytning
2010 (engelsk)Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 115, nr E06Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Influence of CO2 line profiles on vertical temperature distributions in the radiative and radiative-convective equilibria is examined in the Venus atmosphere. The CO2 opacity obtained by the Voigt (Lorentz) profile without the line cutoff is shown to be excessive since this opacity gives surface temperatures of about 860-1020 K in the radiative-convective equilibrium. On the other hand, the opacity obtained by the extremely sub-Lorentzian profiles of Pollack et al. (1993) and Tonkov et al. (1996) are underestimated; the surface temperature obtained with this opacity remains 600 K even in the radiative equilibrium. In this case, convection does not take place below the cloud layer because of the cloud opacity. It is also shown that Fukabori et al.' s (1986) and Meadows and Crisp's (1996) profiles, both of which have intermediate absorption coefficients, give temperature distributions close to the observed one in the radiative-convective equilibrium. In these cases, the convection layer extends from the surface to 30-50 km altitudes. Then, the temperature distribution below the cloud layer is determined by a dry adiabatic lapse rate and the temperature near the cloud bottom. The surface temperature in the radiative-convective equilibrium is strongly affected by the temperature near the cloud bottom in this situation. The detailed structure of the H2SO4 cloud must be taken into account to construct a realistic radiative transfer model.

sted, utgiver, år, opplag, sider
2010. Vol. 115, nr E06
HSV kategori
Forskningsprogram
Rymdteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-10987DOI: 10.1029/2009JE003488ISI: 000279313100002Scopus ID: 2-s2.0-77954482032Lokal ID: 9e224a30-9323-11df-8806-000ea68e967bOAI: oai:DiVA.org:ltu-10987DiVA, id: diva2:983936
Merknad
Validerad; 2010; 20100719 (andbra)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Mendrok, Jana

Søk i DiVA

Av forfatter/redaktør
Mendrok, Jana
Av organisasjonen
I samme tidsskrift
Journal of Geophysical Research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 15 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf