Endre søk

Referera
Referensformat
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Annet format
Fler format
Språk
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Annet språk
Fler språk
Utmatningsformat
• html
• text
• asciidoc
• rtf
Boundedness and compactness of a class of matrix operators in weighted sequence spaces
Eurasian National University, Astana.
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
2008 (engelsk)Inngår i: Journal of Mathematical Inequalities, ISSN 1846-579X, E-ISSN 1848-9575, Vol. 2, nr 4, s. 555-570Artikkel i tidsskrift (Fagfellevurdert) Published
##### Abstract [en]

Characterisations of bounded and compact multiple weighted summation operators from weighted ℓ p into weighted ℓ q spaces are established. Let 1<p,q<∞ , let ℓ p denote the space of all p -summable real sequences, let (ω i,k ) ∞ k=1 for i=1,2,…,n−1 , u=(u i ) ∞ i=1 and v=(v i ) ∞ i=1 be nonnegative sequences, and let ℓ p,v be the space of all sequences f=(f i ) ∞ i=1 such that fv=(f i v i ) ∞ i=1 ∈ℓ p , endowed with the natural norm ∥⋅∥ ℓ p,v defined by (∑ ∞ i=1 |f i v i | p ) 1/p . The n -tuple summation operator S n is defined by (S n f) i =∑ k 1 =1 i ω 1,k 1 ∑ k 2 =1 k 1 ω 2,k 2 ∑ k 3 =1 k 2 ω 3,k 3 ⋯∑ k n−1 =1 k n−2 ω n−1,k n−1 ∑ j=1 k n−1 f j . A necessary and sufficient condition is established for the inequality ∥S n f∥ ℓ q,u ≤C∥f∥ ℓ p,u to hold in the case 1<p≤q<∞ , for all sequences f∈ℓ q,u , where C is an absolute constant. This condition immediately yields a necessary and sufficient condition for S n to be a bounded operator from ℓ q,u into ℓ p,v . This result is a generalisation of a known result by K. F. Andersen and H. P. Heinig in the case n=1 when the operator S n reduces to a discrete Hardy operator of the form (S 1 f) i =∑ i j=1 f j . Finally, a necessary and sufficient condition is established for S n to be a compact operator from ℓ q,u into ℓ p,v when 1<p≤q<∞ . It should be noted that if n=2 then S 2 f can be expressed as a special matrix transformation of the form (Af) i =∑ i j=1 a ij f j .

##### sted, utgiver, år, opplag, sider
2008. Vol. 2, nr 4, s. 555-570
Matematik
##### Identifikatorer
Lokal ID: d02eff0e-e315-4793-a1bb-9461d958962fOAI: oai:DiVA.org:ltu-13733DiVA, id: diva2:986686

Upprättat; 2008; 20130627 (andbra)

Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2017-11-24bibliografisk kontrollert

#### Open Access i DiVA

Fulltekst mangler i DiVA

#### Personposter BETA

Temirkhanova, Ainur

#### Søk i DiVA

##### Av forfatter/redaktør
Temirkhanova, Ainur
##### I samme tidsskrift
Journal of Mathematical Inequalities

urn-nbn

#### Altmetric

urn-nbn
Totalt: 10 treff

Referera
Referensformat
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Annet format
Fler format
Språk
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Annet språk
Fler språk
Utmatningsformat
• html
• text
• asciidoc
• rtf