Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Improvement in the Observation Model for Monte Carlo Localization
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0001-6868-2210
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.ORCID-id: 0000-0002-0079-9049
2014 (engelsk)Inngår i: Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics: Vienna, Austria, 1-3, September, 2014, SciTePress, 2014, s. 498-505Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

Accurate and robust mobile robot localization is very important in many robot applications. Monte Carlo localization (MCL) is one of the robust probabilistic solutions to robot localization problems. The sensor model used in MCL directly influence the accuracy and robustness of the pose estimation process. The classical beam models assumes independent noise in each individual measurement beam at the same scan. In practice, the noise in adjacent beams maybe largely correlated. This will result in peaks in the likelihood measurement function. These peaks leads to incorrect particles distribution in the MCL. In this research, an adaptive sub-sampling of the measurements is proposed to reduce the peaks in the likelihood function. The sampling is based on the complete scan analysis. The specified measurement is accepted or not based on the relative distance to other points in the 2D point cloud. The proposed technique has been implemented in ROS and stage simulator. The result shows that selecting suitable value of distance between accepted scans can improve the localization error and reduce the required computations effectively.

sted, utgiver, år, opplag, sider
SciTePress, 2014. s. 498-505
HSV kategori
Forskningsprogram
Reglerteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-20144Lokal ID: 25257edf-8707-4b91-aca2-588ac6b210f5ISBN: 9789897580406 (tryckt)OAI: oai:DiVA.org:ltu-20144DiVA, id: diva2:993188
Merknad
Godkänd; 2014; 20140915 (alhana)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2017-11-24bibliografisk kontrollert

Open Access i DiVA

fulltekst(505 kB)64 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 505 kBChecksum SHA-512
a68a8adb084d163c6cda4945d0bd033cef5eb60fae93a7cfa50d5624198b234664d33721a03afc38f9a85b096afd53674c03402a8dac0573c8eff7fa9d4f2340
Type fulltextMimetype application/pdf

Personposter BETA

Alhashimi, AnasHostettler, RolandGustafsson, Thomas

Søk i DiVA

Av forfatter/redaktør
Alhashimi, AnasHostettler, RolandGustafsson, Thomas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 64 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 191 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf