RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical models for simulating wear and friction-induced heating in rough surface contacts
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Maskinelement.ORCID-id: 0000-0001-6132-5536
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The study of friction and wear is a crucial element in the effort to reduce carbon footprint in technology. It is evident that friction and wear are responsible for a significant amount of global energy losses, emphasizing the need for research on the topic. However, due to the complexities associated with multi-physics phenomena and surface roughness at the micro-scale, it can become challenging to understand the tribological processes involved. Apart from friction and wear, this interaction also gives rise to phenomena like frictional heating and the generation of third-body wear particles due to both adhesion and abrasion. These phenomena can lead to reductions in performance, efficiency and durability in mechanical systems. 

The aim of present work is the development of advanced numerical tools with the purpose of studying friction and wear processes in detail. Wear, friction and the associated heating can be found in nearly all types of sliding mechanical systems. Typical examples include, but are not limited to, bearings, gears, shafts and cams. The numerical methods which exist currently are usually simplified, using idealized assumptions and non-realistic boundary conditions. For this reason, many of the models are not able to account for the various mechanisms involved in multi-asperity contacts. 

This research presents a multi-scale and multi-asperity thermo-mechanical model to study the temperatures at the interface due to surface roughness, while accounting for wear with Archard’s wear law. Realizing that the thermo-mechanical behavior is influenced by the post-necking behaviour of stresses and their respective states, the subsequent work focuses on incorporating these in single asperity wear simulations. The research has provided valuable insights into the wear mechanisms, revealing various issues within classical models, such as Archard’s wear law and resulting in the development of more advanced tools. Specifically, in the context of asperity-to-asperity interaction, where non-linear effects are more prominent, a linear relation between the wear volume and load may no longer hold. To address this, the research introduces thermo-mechanical models that combine the Boundary Element Method with non-linear Finite Element methods to study temperatures, deformations and wear in asperity-to-asperity contacts.

Key findings suggests that the average interface temperature is independent of roughness, unlike the maximum temperature which increases with increasing high frequency cut-off values and decreasing Hurst exponent values. Recognizing the significant influence of strain-softening and stress-states on the thermo-mechanical behavior, subsequent studies have been directed towards addressing this aspect, while focusing on single asperity collisions. The work presents an advanced three-dimensional Finite Element and a meshfree particle method to simulate large deformations and fracture in colliding asperities, accounting for stress triaxiality and lode parameters. It is shown that the maximum temperature rise and total wear volume are both affected by the triaxiality values and strain-softening. Simulations conducted with a model based on the meshfree particle method reveals a critical parameter that signals the transition from mild to severe wear, leading to the creation of a wear particle at the interface. More importantly, the findings have reveal the limitations in Archard’s wear law, serving as motivation for improvement and resulting in the final paper. In the final study, an improved wear coefficient is presented, resulting in more accurate wear predictions than the traditional Archard’s wear law. The improved wear coefficient is deduced from the contact area and the accumulation of crack energy along the direction of frictional force, resulting in a spatially varying and non-linear relation between wear volume and load. This model is coupled with the Boundary Element Method, which assumes that the surfaces are flat and semi-infinite and that the interacting surfaces are perfectly-plastic. This advancement eliminates the necessity of resorting to large, complex, and often time-consuming finite element based methods. The work also highlights deficiencies in the classical Archard’s wear model in correctly predicting the wear particle formation.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2024.
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nationell ämneskategori
Tribologi (ytteknik omfattande friktion, nötning och smörjning)
Forskningsämne
Maskinelement
Identifikatorer
URN: urn:nbn:se:ltu:diva-104852ISBN: 978-91-8048-511-1 (tryckt)ISBN: 978-91-8048-512-8 (digital)OAI: oai:DiVA.org:ltu-104852DiVA, id: diva2:1846534
Disputation
2024-06-05, E231, Luleå University of Technology, Luleå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-03-22 Skapad: 2024-03-22 Senast uppdaterad: 2024-05-07Bibliografiskt granskad
Delarbeten
1. A Multi-scale Contact Temperature Model for Dry Sliding Rough Surfaces
Öppna denna publikation i ny flik eller fönster >>A Multi-scale Contact Temperature Model for Dry Sliding Rough Surfaces
2021 (Engelska)Ingår i: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 69, nr 4Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A multi-scale flash temperature model has been developed and validated against existing work. The core strength of the proposed model is that it can be adapted to predict flash contact temperatures occurring in various types of sliding systems. In this paper, it is used to investigate how different surface roughness parameters affect the flash temperatures. The results show that for decreasing Hurst exponents as well as increasing values of the high-frequency cut-off, the maximum flash temperature increases. It was also shown that the effect of surface roughness does not influence the average interface temperature. The model predictions were validated against data from an experiment conducted in a pin-on-disc machine. This also showed the importance of including a wear model when simulating flash temperature development in a sliding system.

Ort, förlag, år, upplaga, sidor
Springer, 2021
Nyckelord
Multi-scale, Contact mechanics, Thermal analysis, Surface roughness
Nationell ämneskategori
Tribologi (ytteknik omfattande friktion, nötning och smörjning)
Forskningsämne
Maskinelement
Identifikatorer
urn:nbn:se:ltu:diva-87048 (URN)10.1007/s11249-021-01504-z (DOI)000692380300001 ()2-s2.0-85113882852 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2020-03635
Anmärkning

Validerad;2021;Nivå 2;2021-09-13 (johcin)

Tillgänglig från: 2021-09-13 Skapad: 2021-09-13 Senast uppdaterad: 2024-03-25Bibliografiskt granskad
2. Validation of a Multi-Scale Contact Temperature Model for Dry Sliding Rough Surfaces
Öppna denna publikation i ny flik eller fönster >>Validation of a Multi-Scale Contact Temperature Model for Dry Sliding Rough Surfaces
2022 (Engelska)Ingår i: Lubricants, E-ISSN 2075-4442, Vol. 10, nr 3Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A multi-scale flash temperature model is validated against existing experimental work. The model shows promising results and proves itself to be a reliable tool for the accurate prediction of the flash temperature development between rough surfaces in sliding systems. Model predictions for the maximum flash temperatures as well as the bulk temperature fields were in very good agreement with the experimentally measured values. The model was also able to accurately predict the formation of hotspots as well as the temperature variations around the hotspots. From the model predictions, it is concluded that it is sufficient to only assess the flash temperatures on a small portion of the contact area and thus save both computational time and memory.

Ort, förlag, år, upplaga, sidor
MDPI, 2022
Nyckelord
multi-scale, validation, finite element method, flash temperature
Nationell ämneskategori
Tribologi (ytteknik omfattande friktion, nötning och smörjning)
Forskningsämne
Maskinelement
Identifikatorer
urn:nbn:se:ltu:diva-90227 (URN)10.3390/lubricants10030041 (DOI)000774946900001 ()2-s2.0-85128470168 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2020-03635Vetenskapsrådet, 2019-04293
Anmärkning

Validerad;2022;Nivå 2;2022-04-21 (hanlid);

Part of special issue: Surface Engineering for Wear Protection and Friction Reduction

Tillgänglig från: 2022-04-21 Skapad: 2022-04-21 Senast uppdaterad: 2024-03-25Bibliografiskt granskad
3. A Stress-State-Dependent Thermo-Mechanical Wear Model for Micro-Scale Contacts
Öppna denna publikation i ny flik eller fönster >>A Stress-State-Dependent Thermo-Mechanical Wear Model for Micro-Scale Contacts
2022 (Engelska)Ingår i: Lubricants, E-ISSN 2075-4442, Vol. 10, nr 9, artikel-id 223Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Wear is a complex phenomenon that depends on the properties of materials and their surfaces, as well as the operating conditions and the surrounding atmosphere. At the micro-scale, abrasive wear occurs as material removal due to plastic deformation and fracture. In the present work, it is shown that fracture is stress-state-dependent and thus should be accounted for when modelling wear. For this reason, a three-dimensional finite element model has been adopted to simulate and study the main mechanisms that lead to wear of colliding asperities for a pair of metals. The model is also fully coupled with a non-linear thermal solver to account for thermal effects such as conversion of plastic work to heat as well as thermal expansion. It is shown that both the wear and flash temperature development are dependent on the stress triaxiality and the Lode parameter.

Ort, förlag, år, upplaga, sidor
MDPI, 2022
Nyckelord
finite element method, flash temperature, wear
Nationell ämneskategori
Fysikalisk kemi Teknisk mekanik
Forskningsämne
Maskinelement
Identifikatorer
urn:nbn:se:ltu:diva-93333 (URN)10.3390/lubricants10090223 (DOI)000856911100001 ()2-s2.0-85138610223 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2020-03635
Anmärkning

Validerad;2022;Nivå 2;2022-10-05 (hanlid)

Tillgänglig från: 2022-10-05 Skapad: 2022-10-05 Senast uppdaterad: 2024-03-25Bibliografiskt granskad
4. A Stress-State-Dependent Sliding Wear Model for Micro-Scale Contacts
Öppna denna publikation i ny flik eller fönster >>A Stress-State-Dependent Sliding Wear Model for Micro-Scale Contacts
2023 (Engelska)Ingår i: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 145, nr 11, artikel-id 111702Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Wear is a complex phenomenon taking place as two bodies in relative motion are brought into contact with each other. There are many different types of wear, for example, sliding, fretting, surface fatigue, and combinations thereof. Wear occurs over a wide range of scales, and it largely depends on the mechanical properties of the material. For instance, at the micro-scale, sliding wear is the result of material detachment that occurs due to fracture. An accurate numerical simulation of sliding wear requires a robust and efficient solver, based on a realistic fracture mechanics model that can handle large deformations. In the present work, a fully coupled thermo-mechanical and meshfree approach, based on the momentum-consistent smoothed particle Galerkin (MC-SPG) method, is adapted and employed to predict wear of colliding asperities. The MC-SPG-based approach is used to study how plastic deformation, thermal response, and wear are influenced by the variation of the vertical overlap between colliding spherical asperities. The findings demonstrate a critical overlap value where the wear mechanism transitions from plastic deformation to brittle fracture. In addition, the results reveal a linear relationship between the average temperature and the increasing overlap size, up until the critical overlap value. Beyond this critical point, the average temperature reaches a steady-state value.

Ort, förlag, år, upplaga, sidor
American Society of Mechanical Engineers (ASME), 2023
Nyckelord
dry friction, flash temperature, MC-SPG, particle methods, sliding, wear mechanisms, Wear model
Nationell ämneskategori
Tribologi (ytteknik omfattande friktion, nötning och smörjning)
Forskningsämne
Maskinelement
Identifikatorer
urn:nbn:se:ltu:diva-102317 (URN)10.1115/1.4063082 (DOI)2-s2.0-85175354354 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2020-03635
Anmärkning

Validerad;2023;Nivå 2;2023-11-13 (joosat);

License fulltext: CC BY

Tillgänglig från: 2023-11-06 Skapad: 2023-11-06 Senast uppdaterad: 2024-03-25Bibliografiskt granskad
5. Improving Archard’s Wear Model: An Energy Based Approach
Öppna denna publikation i ny flik eller fönster >>Improving Archard’s Wear Model: An Energy Based Approach
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Tribologi (ytteknik omfattande friktion, nötning och smörjning)
Forskningsämne
Maskinelement
Identifikatorer
urn:nbn:se:ltu:diva-104853 (URN)
Tillgänglig från: 2024-03-22 Skapad: 2024-03-22 Senast uppdaterad: 2024-03-25

Open Access i DiVA

fulltext(14706 kB)157 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 14706 kBChecksumma SHA-512
29d87c1fb738a03dd51fe4fd39fd195d39603f5af7df7cf841be20f874b7857ed67ce04ed684f1c85bffb5bbdc42ba5945df3979d1f00c3cc2982abe1223b6e9
Typ fulltextMimetyp application/pdf

Person

Choudhry, Jamal

Sök vidare i DiVA

Av författaren/redaktören
Choudhry, Jamal
Av organisationen
Maskinelement
Tribologi (ytteknik omfattande friktion, nötning och smörjning)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 183 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 2007 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf