RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Explainable Artificial Intelligence for Drug Discovery and Development: A Comprehensive Survey
Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia.ORCID-id: 0000-0002-3069-7932
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0001-9895-6796
Dibrugarh University, Examination Branch, Dibrugarh, Assam, India.ORCID-id: 0000-0002-9840-4796
Mepco Schlenk Engineering College, Department of Electronics and Communication Engineering, Sivakasi, India.ORCID-id: 0000-0002-9516-0327
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 12, s. 35796-35812Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

The field of drug discovery has experienced a remarkable transformation with the advent of artificial intelligence (AI) and machine learning (ML) technologies. However, as these AI and ML models are becoming more complex, there is a growing need for transparency and interpretability of the models. Explainable Artificial Intelligence (XAI) is a novel approach that addresses this issue and provides a more interpretable understanding of the predictions made by machine learning models. In recent years, there has been an increasing interest in the application of XAI techniques to drug discovery. This review article provides a comprehensive overview of the current state-of-the-art in XAI for drug discovery, including various XAI methods, their application in drug discovery, and the challenges and limitations of XAI techniques in drug discovery. The article also covers the application of XAI in drug discovery, including target identification, compound design, and toxicity prediction. Furthermore, the article suggests potential future research directions for the application of XAI in drug discovery. This review article aims to provide a comprehensive understanding of the current state of XAI in drug discovery and its potential to transform the field.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2024. Vol. 12, s. 35796-35812
Nyckelord [en]
big data, Drug discovery, explainable artificial intelligence, machine learning
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-104882DOI: 10.1109/ACCESS.2024.3373195Scopus ID: 2-s2.0-85187337752OAI: oai:DiVA.org:ltu-104882DiVA, id: diva2:1846965
Anmärkning

Validerad;2024;Nivå 2;2024-04-05 (marisr);

Full text license: CC BY

Tillgänglig från: 2024-03-26 Skapad: 2024-03-26 Senast uppdaterad: 2024-04-05Bibliografiskt granskad

Open Access i DiVA

fulltext(1233 kB)379 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1233 kBChecksumma SHA-512
6c840889ef51384a6de06511b3c576c0f2cf7f1eb32ee3206300a20b79cf7dc1696366539412d729e21f88ef1238fe04a9c0df196d604cd66f42f168ac7e70a7
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Oyelere, Solomon Sunday

Sök vidare i DiVA

Av författaren/redaktören
Alizadehsani, RoohallahOyelere, Solomon SundayHussain, SadiqJagatheesaperumal, Senthil KumarRahouti, MohamedDe Albuquerque, Victor Hugo C.
Av organisationen
Datavetenskap
I samma tidskrift
IEEE Access
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 379 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 307 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf