Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine Learning on Big Data: Opportunities and Challenges
Information Systems Department, UMBC, Baltimore.
Information Systems Department, UMBC, Baltimore.
Information Systems Department, UMBC, Baltimore.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-1902-9877
Antal upphovsmän: 42017 (Engelska)Ingår i: Neurocomputing, ISSN 0925-2312, E-ISSN 1872-8286, Vol. 237, s. 350-361Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Machine learning (ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the forefront in recent years partly owing to the advert of big data. ML algorithms have never been better promised while challenged by big data. Big data enables ML algorithms to uncover more fine-grained patterns and make more timely and accurate predictions than ever before; on the other hand, it presents major challenges to ML such as model scalability and distributed computing. In this paper, we introduce a framework of ML on big data (MLBiD) to guide the discussion of its opportunities and challenges. The framework is centered on ML which follows the phases of preprocessing, learning, and evaluation. In addition, the framework is also comprised of four other components, namely big data, user, domain, and system. The phases of ML and the components of MLBiD provide directions for the identification of associated opportunities and challenges and open up future work in many unexplored or under explored research areas.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017. Vol. 237, s. 350-361
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-61412DOI: 10.1016/j.neucom.2017.01.026ISI: 000397356700032Scopus ID: 2-s2.0-85011371254OAI: oai:DiVA.org:ltu-61412DiVA, id: diva2:1064623
Anmärkning

Validerad; 2017; Nivå 2; 2017-03-08 (andbra)

Tillgänglig från: 2017-01-12 Skapad: 2017-01-12 Senast uppdaterad: 2018-09-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Vasilakos, Athanasios

Sök vidare i DiVA

Av författaren/redaktören
Vasilakos, Athanasios
Av organisationen
Datavetenskap
I samma tidskrift
Neurocomputing
Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 687 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf