Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multimedia Processing Pricing Strategy in GPU-accelerated Cloud Computing
Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido.
Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido.
Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-1902-9877
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: IEEE Transactions on Cloud Computing, E-ISSN 2168-7161Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Graphics processing unit (GPU) accelerated processing performs significant efficiency in many multimedia applications. With the development of GPU cloud computing, more and more cloud providers focus on GPU-accelerated services. Since the high maintenance cost and different speedups for various applications, GPU-accelerated services still need a different pricing strategy. Thus, in this paper, we propose an optimal GPU-accelerated multimedia processing service pricing strategy for maximize the profits of both cloud provider and users. We first analyze the revenues and costs of the cloud provider and users when users adopt GPU-accelerated multimedia processing services then state the profit functions of both the cloud provider and users. With a game theory based method, we find the optimal solutions of both the cloud provider’s and users’ profit functions. Finally, through large scale simulations, our pricing strategy brings higher profit to the cloud provider and users compared to the original pricing strategy of GPU cloud services.

Ort, förlag, år, upplaga, sidor
IEEE, 2019.
Nyckelord [en]
Multimedia, GPU-accelerated, Cloud Computing, Pricing
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-62860DOI: 10.1109/TCC.2017.2672554OAI: oai:DiVA.org:ltu-62860DiVA, id: diva2:1086579
Tillgänglig från: 2017-04-03 Skapad: 2017-04-03 Senast uppdaterad: 2019-03-18

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Vasilakos, Athanasios

Sök vidare i DiVA

Av författaren/redaktören
Vasilakos, Athanasios
Av organisationen
Datavetenskap
Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 92 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf