Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Challenges and Opportunities of Using Big Data for Assessing Flood Risks
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0002-3090-7645
University of Chittagong, Bangladesh.ORCID-id: 0000-0002-7473-8185
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-0244-3561
2018 (Engelska)Ingår i: Applications of Big Data Analytics: Trends, Issues, and Challenges / [ed] Mohammed M. Alani, Hissam Tawfik, Mohammed Saeed, Obinna Anya, Cham: Springer, 2018, s. 31-42Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

Among the various natural calamities, flood is considered one of the most catastrophic natural hazards, which has disastrous impact on the socioeconomic lifeline of a country. Nowadays, business organizations are using Big Data to improve their strategies and operations for revealing patterns and market trends to increase revenues. Eventually, the crisis response teams of a country have turned their interest to explore the potentialities of Big Data in managing disaster risks such as flooding. The reason for this is that during flooding, crisis response teams need to take decisions based on the huge amount of incomplete and inaccurate information, which are mainly coming from three major sources, including people, machines, and organizations. Hence, Big Data technologies can be used to monitor and to determine the people exposed to the risks of flooding in real time. This could be achieved by analyzing and processing sensor data streams coming from various sources as well as data collected from other sources such as Twitter, Facebook, and satellite and also from disaster organizations of a country by using Big Data technologies. Therefore, this chapter explores the challenges, the opportunities, and the methods, required to leverage the potentiality of Big Data to assess and predict the risk of flooding.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2018. s. 31-42
Nyckelord [en]
Big Data, Sensor streaming, Real time, Flooding, Risk assessment
Nationell ämneskategori
Datavetenskap (datalogi) Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-70155DOI: 10.1007/978-3-319-76472-6ISBN: 978-3-319-76471-9 (tryckt)ISBN: 978-3-319-76472-6 (digital)OAI: oai:DiVA.org:ltu-70155DiVA, id: diva2:1234437
Projekt
A belief-rule-based DSS to assess flood risks by using wireless sensor networks
Forskningsfinansiär
Vetenskapsrådet, 2014-4251Tillgänglig från: 2018-07-24 Skapad: 2018-07-24 Senast uppdaterad: 2018-08-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Islam, Raihan UlAndersson, Karl

Sök vidare i DiVA

Av författaren/redaktören
Monrat, Ahmed AfifIslam, Raihan UlHossain, Mohammad ShahadatAndersson, Karl
Av organisationen
Datavetenskap
Datavetenskap (datalogi)Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 319 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf