Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance analysis of a surveillance system to detect and track vehicles using Haar cascaded classifiers and optical flow method
University of Science and Technology Chittagong.
Department of Computer Science and Engineering, Rangamati Science and Technology University, Rangamati.
Department of Computer Science and Engineering, University of Science and Technology Chittagong Foy's Lake, Chittagong, Bangladesh.
Department of Computer Science and Engineering, University of Science and Technology Chittagong Foy's Lake, Chittagong, Bangladesh.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Institute of Electrical and Electronics Engineers (IEEE), 2017, s. 258-263, artikel-id 17595122Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents the real time vehicle detection and tracking system, based on data, collected from a single camera. In this system, vehicles are detected by using Haar Feature-based Cascaded Classifier on static images, extracted from the video file. The advantage of this classifier is that, it uses floating numbers in computations and hence, 20% more accuracy can be achieved in comparison to other classifiers and features of classifiers such as LBP (Local Binary Pattern). Tracking of the vehicles is carried out using Lucas-Kanade and Horn Schunk Optical Flow method because it performs better than other methods such as Morphological and Correlation Transformations. The proposed system consists of vehicle detection and tracking; and it is evaluated by using real data, collected from the route networks of Chittagong City of Bangladesh.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2017. s. 258-263, artikel-id 17595122
Nyckelord [en]
Haar like Features, Cascade Classifiers, vehicle detection, vehicle tracking
Nationell ämneskategori
Datavetenskap (datalogi) Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-70158DOI: 10.1109/ICIEA.2017.8282853Scopus ID: 2-s2.0-85047501241ISBN: 978-1-5090-6162-4 (tryckt)ISBN: 978-1-5090-6161-7 (digital)ISBN: 978-1-5386-2103-5 (tryckt)OAI: oai:DiVA.org:ltu-70158DiVA, id: diva2:1235259
Konferens
12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18-20 June 2017
Projekt
A belief-rule-based DSS to assess flood risks by using wireless sensor networks
Forskningsfinansiär
Vetenskapsrådet, 2014-4251Tillgänglig från: 2018-07-24 Skapad: 2018-07-24 Senast uppdaterad: 2019-01-18Bibliografiskt granskad

Open Access i DiVA

fulltext(427 kB)88 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 427 kBChecksumma SHA-512
8170ed87b95258487e547a592c26fdb76091c859729c617171a5d0040a83000a820cec913f7e0b761ebc85b351e73b19dd999cb03e1b3b12990cb0c1d7cd5d05
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Andersson, Karl

Sök vidare i DiVA

Av författaren/redaktören
Andersson, KarlHossain, Mohammad Shahadat
Av organisationen
Datavetenskap
Datavetenskap (datalogi)Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 88 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 21 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf