Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sensibility study for optimizing the classification of remote sensing time series
2007 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Sensibility studies are necessary to evaluate if an existing method is optimizable. The present method for classification of land cover uses the course of information about an observed region during one year. The progress of the natural cover of an observed region gets visible by using weekly composites of NDVI measurements. Filling this data in a diagram results in a time curve. This time series can be characterized by minimum, maximum, amplitude, average and standard deviation of the curve and by other parameters. The analysis of this values, for example by utilization of Recursive Partitioning and Regression Trees (RPART) allows a classification of the vegetation. In the sensibility study the effects of the variation of several criteria like temporal segmentation, pre-utilization of curve smoothing are analyzed. Also the impact of changing training data on the classification of specific target classes and the possibility of predicting classes are an objective of this sensibility studies. Therefore the software, developed in a dissertation at the University of Würzburg, is changed and adopted to be able to apply statistics on the input data to provide the output for the analysis.The gained knowledge shows in which extent the results can be used to optimize the existing method. This results are more interesting in the field of segmentation, harmonics, and prediction than in curve smoothing. It is indicated that the correctness of the classification changes a lot by changing the training regions and that segmentation is very a promising approach.

Ort, förlag, år, upplaga, sidor
2007.
Nyckelord [en]
Technology
Nyckelord [sv]
Teknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-48626ISRN: LTU-PB-EX--07/085--SELokalt ID: 60eeb794-7a57-4d56-97aa-1607c3c6c463OAI: oai:DiVA.org:ltu-48626DiVA, id: diva2:1021969
Ämne / kurs
Examensarbete, minst 15 hp
Utbildningsprogram
Rymdteknik, magister
Examinatorer
Anmärkning
Validerat; 20101217 (root)Tillgänglig från: 2016-10-04 Skapad: 2016-10-04Bibliografiskt granskad

Open Access i DiVA

fulltext(3577 kB)115 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3577 kBChecksumma SHA-512
4f77a90460c304a967864568d1ca467de0010b314a0b30fd7a5f5f5037f5ef857ef6a9d93ff8b5ffdcc00a89922f16b10cb077fbe197c9d18fc8b8da3332a802
Typ fulltextMimetyp application/pdf

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 115 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 55 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf