Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy Disaggregation Methods for Commercial Buildingsusing Smart Meter and Operational data
NEC Laboratories Europe, Heidelberg.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.
Antal upphovsmän: 22017 (Engelska)Ingår i: The Workshops of the Thirty-First AAAI Conference on Artificial Intelligence: Artificial Intelligence for Smart Grids and Smart Buildings, AI Access Foundation , 2017, s. 325-329Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

One of the key information pieces in improving energy efficiency of buildings is the appliance level breakdown of energy consumption. Energy disaggregation is the process of obtaining this breakdown from a building level aggregate data using computational techniques. Most of the current research focuses on residential buildings, obtaining this information from a single smart meter and often relying on high frequency data. This work is directed at commercial buildings equipped with building management and automation systems providing low frequency operational and contextual data. This paper presents a machine learning method to disaggregate energy consumption of the building using this operational data as input features. Experimental results on two publicly available datasets demonstrate the effectiveness of the approach, which surpasses existing methods. For all but one appliance of House 2 of the publicly available REDD dataset, improvements in normalized error in assigned power range between 20% (Lighting) and 220% (Stove). For another dataset from an educational facility in Singapore, disaggregation accuracy of 92% is reported for the facility’s cooling system.

Ort, förlag, år, upplaga, sidor
AI Access Foundation , 2017. s. 325-329
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-61569Scopus ID: 2-s2.0-85046106576ISBN: 9781577357865 (tryckt)OAI: oai:DiVA.org:ltu-61569DiVA, id: diva2:1067424
Konferens
31st AAAI Conference on Artificial Intelligence (AAAI-17, San Francisco, 4–9 February 2017
Tillgänglig från: 2017-01-20 Skapad: 2017-01-20 Senast uppdaterad: 2025-02-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Person

Schmidt, Mischa

Sök vidare i DiVA

Av författaren/redaktören
Schmidt, Mischa
Av organisationen
Datavetenskap
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 997 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf