Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology
Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago, Santiago de Compostela, Spain.
Luleå tekniska universitet, Institutionen för hälsovetenskap, Medicinsk vetenskap. Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical SciencesUniversity of Chile, Santiago, Chile. Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.ORCID-id: 0000-0002-3190-2168
2018 (Engelska)Ingår i: Drug Delivery and Translational Research, ISSN 2190-393X, Vol. 8, nr 6, s. 1797-1806Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Nanoprecipitation is a simple and fast method to produce polymeric nanoparticles (Np); however, most applications require filtration or another separation technique to isolate the nanosuspension from aggregates or polydisperse particle production. In order to avoid variability introduced by these additional steps, we report here a systematic study of the process to yield monomodal and uniform Np production with the nanoprecipitation method. To further identify key variables and their interactions, we used artificial neural networks (ANN) to investigate the multiple variables which influence the process. In this work, a polymethacrylate derivative was used for Np (NpERS) and a database with several formulations and conditions was developed for the ANN model. The resulting ANN model had a high predictability (> 70%) for NpERS characteristics measured (mean size, PDI, zeta potential, and number of particle populations). Moreover, the model identified production variables leading to polymer supersaturation, such as mixing time and turbulence, as key in achieving monomodal and uniform NpERS in one production step. Polymer concentration and type of solvent, modifiers of polymer diffusion and supersaturation, were also shown to control NpERS characteristics. The ANN study allowed the identification of key variables and their interactions and resulted in a predictive model to study the NpERS production by nanoprecipitation. In turn, we have achieved an optimized method to yield uniform NpERS which could pave way for polymeric nanoparticle production methods with potential in biological and drug delivery applications.

Ort, förlag, år, upplaga, sidor
Springer, 2018. Vol. 8, nr 6, s. 1797-1806
Nyckelord [en]
Nanoprecipitation, Artificial neural networks, Polymeric nanoparticles, Nanoparticle production, Mixing time, Homogeneous nanoparticles
Nationell ämneskategori
Annan hälsovetenskap
Forskningsämne
Hälsovetenskap
Identifikatorer
URN: urn:nbn:se:ltu:diva-67212DOI: 10.1007/s13346-017-0446-8ISI: 000449290900018PubMedID: 29288356Scopus ID: 2-s2.0-85054721730OAI: oai:DiVA.org:ltu-67212DiVA, id: diva2:1172472
Anmärkning

Validerad;2018;Nivå 2;2018-11-29 (inah)

Tillgänglig från: 2018-01-10 Skapad: 2018-01-10 Senast uppdaterad: 2019-09-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Morales, Javier O.

Sök vidare i DiVA

Av författaren/redaktören
Morales, Javier O.
Av organisationen
Medicinsk vetenskap
Annan hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 26 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf