Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards Bayesian-based Trust Management for Insider Attacks in Healthcare Software-Defined Networks
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark.
Department of Information Systems and Cyber Security and the Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, United States.
School of Computing, Electronics and Mathematics, Plymouth University, United Kindom.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0003-1902-9877
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: IEEE Transactions on Network and Service Management, ISSN 1932-4537, E-ISSN 1932-4537, Vol. 15, nr 2, s. 761-773Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The medical industry is increasingly digitalized and Internet-connected (e.g., Internet of Medical Things), and when deployed in an Internet of Medical Things environment, software-defined networks (SDN) allow the decoupling of network control from the data plane. There is no debate among security experts that the security of Internet-enabled medical devices is crucial, and an ongoing threat vector is insider attacks. In this paper, we focus on the identification of insider attacks in healthcare SDNs. Specifically, we survey stakeholders from 12 healthcare organizations (i.e., two hospitals and two clinics in Hong Kong, two hospitals and two clinics in Singapore, and two hospitals and two clinics in China). Based on the survey findings, we develop a trust-based approach based on Bayesian inference to figure out malicious devices in a healthcare environment. Experimental results in either a simulated and a real-world network environment demonstrate the feasibility and effectiveness of our proposed approach regarding the detection of malicious healthcare devices, i.e., our approach could decrease the trust values of malicious devices faster than similar approaches.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 15, nr 2, s. 761-773
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-67941DOI: 10.1109/TNSM.2018.2815280ISI: 000435177300020Scopus ID: 2-s2.0-85043786981OAI: oai:DiVA.org:ltu-67941DiVA, id: diva2:1190649
Anmärkning

Validerad;2018;Nivå 2;2018-06-15 (andbra)

Tillgänglig från: 2018-03-15 Skapad: 2018-03-15 Senast uppdaterad: 2018-07-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Vasilakos, Athanasios

Sök vidare i DiVA

Av författaren/redaktören
Vasilakos, Athanasios
Av organisationen
Datavetenskap
I samma tidskrift
IEEE Transactions on Network and Service Management
Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 42 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf