Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Personalized Online Training for Physical Activity monitoring using weak labels
Ulster University.
Ulster University.
Ulster University.
Ulster University.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), IEEE, 2018, s. 567-572Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The use of smartphones for activity recognition is becoming common practice. Most approaches use a single pretrained classifier to recognize activities for all users. Research studies, however, have highlighted how a personalized trained classifier could provide better accuracy. Data labeling for ground truth generation, however, is a time-consuming process. The challenge is further exacerbated when opting for a personalized approach that requires user specific datasets to be labeled, making conventional supervised approaches unfeasible. In this work, we present early results on the investigation into a weakly supervised approach for online personalized activity recognition. This paper describes: (i) a heuristic to generate weak labels used for personalized training, (ii) a comparison of accuracy obtained using a weakly supervised classifier against a conventional ground truth trained classifier. Preliminary results show an overall accuracy of 87% of a fully supervised approach against a 74% with the proposed weakly supervised approach.

Ort, förlag, år, upplaga, sidor
IEEE, 2018. s. 567-572
Nyckelord [en]
data annotation, weakly supervised learning, smartphone activity recognition
Nationell ämneskategori
Data- och informationsvetenskap Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-68146DOI: 10.1109/PERCOMW.2018.8480292Scopus ID: 2-s2.0-85050025511ISBN: 978-1-5386-3227-7 (digital)OAI: oai:DiVA.org:ltu-68146DiVA, id: diva2:1194664
Konferens
2nd International Workshop on Annotation of useR Data for UbiquitOUs Systems (ARDUOUS 2018), Athens, Greece, March 19-23, 2018
Tillgänglig från: 2018-04-03 Skapad: 2018-04-03 Senast uppdaterad: 2019-01-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Synnes, KåreHallberg, Josef

Sök vidare i DiVA

Av författaren/redaktören
Synnes, KåreHallberg, Josef
Av organisationen
Datavetenskap
Data- och informationsvetenskapMedieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 147 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf