Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Degradation Modeling and Remaining Useful Life Prediction of Aircraft Engines Using Ensemble Learning
Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, United States.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Drift, underhåll och akustik. NASA Ames Research Center, Moffett Field, United States.ORCID-id: 0000-0002-0240-0943
Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, United States.
2019 (Engelska)Ingår i: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 141, nr 4, artikel-id 041008Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Degradation modeling and prediction of remaining useful life (RUL) are crucial to prognostics and health management of aircraft engines. While model-based methods have been introduced to predict the RUL of aircraft engines, little research has been reported on estimating the RUL of aircraft engines using novel data-driven predictive modeling methods. The objective of this study is to introduce an ensemble learning-based prognostic approach to modeling an exponential degradation process due to wear as well as predicting the RUL of aircraft engines. The ensemble learning algorithm combines multiple base learners, including random forests (RFs), classification and regression tree (CART), recurrent neural networks (RNN), autoregressive (AR) model, adaptive network-based fuzzy inference system (ANFIS), relevance vector machine (RVM), and elastic net (EN), to achieve better predictive performance. The particle swarm optimization (PSO) and sequential quadratic optimization (SQP) methods are used to determine optimum weights that are assigned to the base learners. The predictive model trained by the ensemble learning algorithm is demonstrated on the data generated by the commercial modular aero-propulsion system simulation (C-MAPSS) tool. Experimental results have shown that the ensemble learning algorithm predicts the RUL of the aircraft engines with considerable robustness as well as outperforms other prognostic methods reported in the literature. 

Ort, förlag, år, upplaga, sidor
American Society for Mechanical Engineers (ASME) , 2019. Vol. 141, nr 4, artikel-id 041008
Nyckelord [en]
remaining useful life prediction, prognostics and health management (PHM), degradation modeling, aircraft engines, ensemble learning
Nationell ämneskategori
Annan samhällsbyggnadsteknik
Forskningsämne
Drift och underhållsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-71864DOI: 10.1115/1.4041674ISI: 000462020200008Scopus ID: 2-s2.0-85056854179OAI: oai:DiVA.org:ltu-71864DiVA, id: diva2:1267489
Anmärkning

Validerad;2018;Nivå 2;2018-12-03 (svasva)

Tillgänglig från: 2018-12-03 Skapad: 2018-12-03 Senast uppdaterad: 2024-08-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Goebel, Kai

Sök vidare i DiVA

Av författaren/redaktören
Goebel, Kai
Av organisationen
Drift, underhåll och akustik
I samma tidskrift
Journal of engineering for gas turbines and power
Annan samhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 759 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf