Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Implementation of Univariate Paradigm for Streamflow Simulation Using Hybrid Data-Driven Model: Case Study in Tropical Region
School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Malaysia.ORCID-id: 0000-0003-3647-7137
Sustainable and Smart Township Research Centre (SUTRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Department of Water Resources, University of Baghdad, Baghdad, Iraq.
Department of Civil Engineering, Razi University, Kermanshah, Iran.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 7, s. 74471-74481Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The performance of the bio-inspired adaptive neuro-fuzzy inference system (ANFIS) models are proposed for forecasting highly non-linear streamflow of Pahang River, located in a tropical climatic region of Peninsular Malaysia. Three different bio-inspired optimization algorithms namely particle swarm optimization (PSO), genetic algorithm (GA), and differential evolution (DE) were individually used to tune the membership function of ANFIS model in order to improve the capability of streamflow forecasting. Different combination of antecedent streamflow was used to develop the forecasting models. The performance of the models was evaluated using a number of metrics including mean absolute error (MAE), root mean square error (RMSE), coefficient of determination ( R2 ), and Willmott’s Index (WI) statistics. The results revealed that increasing number of inputs has a positive impact on the forecasting ability of both ANFIS and hybrid ANFIS models. The comparison of the performance of three optimization methods indicated PSO improved the capability of ANFIS model (RMSE = 7.96; MAE = 2.34; R2=0.998 and WI = 0.994) more compared to GA and DE in forecasting streamflow. The uncertainty band of ANFIS-PSO forecast was also found the lowest (±0.217), which indicates that ANFIS-PSO model can be used for reliable forecasting of highly stochastic river flow in tropical environment.

Ort, förlag, år, upplaga, sidor
USA: IEEE, 2019. Vol. 7, s. 74471-74481
Nyckelord [en]
Streamow forecasting, fuzzy logic, evolutionary algorithm, uncertainty analysis, tropical
Nationell ämneskategori
Teknik och teknologier Geoteknik
Forskningsämne
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-75188DOI: 10.1109/ACCESS.2019.2920916ISI: 000472650400001OAI: oai:DiVA.org:ltu-75188DiVA, id: diva2:1333799
Anmärkning

Validerad;2019;Nivå 2;2019-07-05 (johcin)

Tillgänglig från: 2019-07-01 Skapad: 2019-07-01 Senast uppdaterad: 2019-08-15Bibliografiskt granskad

Open Access i DiVA

fulltext(10073 kB)36 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 10073 kBChecksumma SHA-512
bfbdbaa54c9e299b97cffa1e624c75af9a782ba9acdc69f445b98ce098808c044106975085158eb25e165cd15ac71df5a4dbcbdccbab48230d1e10d68ec20b73
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Al-Ansari, Nadhir

Sök vidare i DiVA

Av författaren/redaktören
Yaseen, Zaher MundherAl-Ansari, Nadhir
Av organisationen
Geoteknologi
I samma tidskrift
IEEE Access
Teknik och teknologierGeoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 36 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 40 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf