Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Highly permeable and selective tubular zeolite CHA membranes
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.ORCID-id: 0000-0003-2656-857x
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.ORCID-id: 0000-0002-7792-1348
ZeoMem Sweden AB, Luleå, Sweden.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.ORCID-id: 0000-0003-1053-4623
2019 (Engelska)Ingår i: Journal of Membrane Science, ISSN 0376-7388, E-ISSN 1873-3123, Vol. 588, artikel-id 117224Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Highly permeable and selective tubular zeolite CHA membranes with a thickness of about 450 nm and a length of 100 mm and an inner diameter of 7 mm were evaluated by single gas permeation experiments and for separation of an equimolar CO2/CH4 mixture. The membranes displayed high H2 and CO2 single gas permeances of 55 × 10−7 mol m−2 s−1 Pa−1 and 94 × 10−7 mol m−2 s−1 Pa−1, respectively, and a very low SF6 permeance of 3 × 10−9 mol m−2 s−1 Pa−1. The highest observed mixture separation factor was 99 with CO2 permeance of 60 × 10−7 mol m−2 s−1 Pa−1 at a feed pressure of 5 bar and permeate pressure of 0.12 bar. The corresponding CO2flux was 1.46 mol m−2 s−1. The highest observed flux was 1.98 mol m−2 s−1 with a separation factor of 52 at a feed pressure of 10 bar and permeate pressure of 0.12 bar at room temperature. To the best of our knowledge, this is the first report describing highly permeable and selective tubular CHA membranes. The results indicate that the membranes have a great potential for industrial separation of CO2from natural gas and biogas.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019. Vol. 588, artikel-id 117224
Nyckelord [en]
Tubular zeolite CHA membrane, Gas separation, High permeance, Biogas, Natural gas
Nationell ämneskategori
Kemiteknik
Forskningsämne
Kemisk teknologi
Identifikatorer
URN: urn:nbn:se:ltu:diva-75258DOI: 10.1016/j.memsci.2019.117224ISI: 000481577200017Scopus ID: 2-s2.0-85068362145OAI: oai:DiVA.org:ltu-75258DiVA, id: diva2:1335992
Anmärkning

Validerad;2019;Nivå 2;2019-07-08 (johcin)

Tillgänglig från: 2019-07-08 Skapad: 2019-07-08 Senast uppdaterad: 2025-02-18Bibliografiskt granskad
Ingår i avhandling
1. Adsorption and Mass Transport in Zeolite Membranes
Öppna denna publikation i ny flik eller fönster >>Adsorption and Mass Transport in Zeolite Membranes
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Zeolites are commonly used as adsorbents and catalysts in the industry due to their well-defined pores of molecular dimensions. Zeolites offer porous structure, which consists of interlinked alumina and silica tetrahedra with shared oxygen atoms. Zeolites can also be prepared as intergrown films on porous supports, which results in zeolite membranes. CHA and MFI are two promising zeolites that can be used as membranes for biogas and syngas separation and upgrading since their pore size is suitable.

Membrane technology is considered an energy-lean gas separation method that offers a straightforward process with compact equipment and high efficiency. Compared with polymeric membranes, zeolite membranes offer higher permeance and stability due to their porous structure and ceramic nature. Since zeolite membranes are expensive and a higher flux would reduce the needed membrane area, thin membranes with high flux are of great interest. However, to enable the design of zeolite membrane processes, it is vital to enhance the fundamental understanding of the mass transport in the materials.

In this study, zeolite membranes of different types, i.e., CHA and MFI, were evaluated for separation of various gas mixtures. MFI disc membranes were evaluated for the separation of equimolar CO2/H2 mixtures under both dry and humid conditions, as well as for the separation of ternary CH4/N2/He mixtures. High selectivity and high CO2 fluxes were observed during CO2/H2 separation under both dry and humid conditions. The MFI disc membrane also displayed a high performance for separation of ternary CH4/N2/He mixtures. The results indicated that MFI membranes are promising candidates for separation of CO2 from the gas mixtures and for helium recovery from natural gas. Tubular CHA membranes, with lengths of 10 and 50 cm, were also investigated for CO2/CH4 separation under industrially relevant conditions. A maximum CO2/CH4 separation selectivity of 198 combined with a CO2 permeance of 14×10-7 mol/(m2·s·Pa) was observed for humid gas. The results verified the feasibility of these membranes for industrial gas separations.

After verifying the high performance of CHA zeolite membranes for gas separation under industrial conditions, CHA zeolite crystals with various Si/Al ratios were synthesized and the adsorption of CO2 and CH4 in the materials were studied. Subsequently, the mass transport through ultra-thin MFI and CHA zeolite disc membranes was measured and a model accounting for the adsorption and diffusion through the surface barriers and in the pores was developed. The model was successfully fitted to both single component and mixture permeation data. The fitted model indicates that the mass transport through ultra-thin membranes is controlled by the surface barriers. It revealed that the surface barrier is a surface diffusion process at the pore mouth with an activation energy that is higher than for the surface diffusion in the pores. Furthermore, the fitted model indicated that the high selectivity of CHA membranes is mostly due to a highly selective surface barrier and, to a lesser extent, is a result of adsorption selectivity.

In the last part of the work, a process for upgrading biogas was designed by using the developed model. The process was compared with a process based on hollow fiber polymeric membranes. It was concluded that the zeolite membrane processes were much more compact and had a much lower demand for electricity than the polymeric membrane process.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2022
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nationell ämneskategori
Kemiteknik
Forskningsämne
Kemisk teknologi
Identifikatorer
urn:nbn:se:ltu:diva-89354 (URN)978-91-8048-032-1 (ISBN)978-91-8048-033-8 (ISBN)
Disputation
2022-04-22, E632, Luleå tekniska universitet (LTU), E-huset, Luleå, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2022-02-21 Skapad: 2022-02-20 Senast uppdaterad: 2022-04-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Yu, LiangNobandegani, Mojtaba SinaeiHedlund, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Yu, LiangNobandegani, Mojtaba SinaeiHedlund, Jonas
Av organisationen
Kemiteknik
I samma tidskrift
Journal of Membrane Science
Kemiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 450 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf