Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimizing virtual machine placement in IaaS data centers: taxonomy, review and open issues
Centre for Mobile Cloud Computing (C4MCC), University of Malaya, Kuala Lumpur, Malaysia.
Centre for Mobile Cloud Computing (C4MCC), University of Malaya, Kuala Lumpur, Malaysia.
School of Informaion Technology, Illinois State University, Normal, United States.
The Future University, Khartoum, Sudan.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Cluster Computing, ISSN 1386-7857, E-ISSN 1573-7543Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

The unprecedented growth of energy consumption in data centers created critical concern in recent years for both the research community and industry. Besides its direct associated cost; high energy consumption also results in a large amount of CO2 emission and incurs extra cooling expenditure. The foremost reason for overly energy consumption is the underutilization of data center resources. In modern data centers, virtualization provides a promising approach to improve the hardware utilization level. Virtual machine placement is a process of mapping a group of virtual machines (VMs) onto a set of physical machines (PMs) in a data center with the aim of maximizing resource utilization and minimizing the total power consumption by PMs. An optimal virtual machine placement algorithm substantially contributes to cutting down the power consumption through assigning the input VMs to a minimum number of PMs and allowing the dispensable PMs to be turned off. However, VM Placement Problem is a complex combinatorial optimization problem and known to be NP-Hard problem. This paper presents an extensive review of virtual machine placement problem along with an overview of different approaches for solving virtual machine placement problem. The aim of this paper is to illuminate challenges and issues for current virtual machine placement techniques. Furthermore, we present a taxonomy of virtual machine placement based on various aspects such as methodology, number of objectives, operation mode, problem objectives, resource demand type and number of clouds. The state-of-the-art VM Placement techniques are classified in single objectives and multi-objective groups and a number of prominent works are reviewed in each group. Eventually, some open issues and future trends are discussed which serve as a platform for future research work in this domain.

Ort, förlag, år, upplaga, sidor
Springer, 2019.
Nyckelord [en]
Cloud computing, Consolidation, Data center, Energy, Virtual machine placement
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-75635DOI: 10.1007/s10586-019-02954-wOAI: oai:DiVA.org:ltu-75635DiVA, id: diva2:1344587
Tillgänglig från: 2019-08-21 Skapad: 2019-08-21 Senast uppdaterad: 2019-08-21

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Vasilakos, Athanasios

Sök vidare i DiVA

Av författaren/redaktören
Vasilakos, Athanasios
Av organisationen
Datavetenskap
I samma tidskrift
Cluster Computing
Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 11 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf