Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Exploration of Machine Learning Methods for Robust Boredom Classification Using EEG and GSR Data
Department of Computer Engineering, Ajou University, Suwon, Korea.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap.ORCID-id: 0000-0001-5966-992x
Department of Computer Engineering, Ajou University, Suwon, Korea.
2019 (Engelska)Ingår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 20, artikel-id 4561Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In recent years, affective computing has been actively researched to provide a higher level of emotion-awareness. Numerous studies have been conducted to detect the user’s emotions from physiological data. Among a myriad of target emotions, boredom, in particular, has been suggested to cause not only medical issues but also challenges in various facets of daily life. However, to the best of our knowledge, no previous studies have used electroencephalography (EEG) and galvanic skin response (GSR) together for boredom classification, although these data have potential features for emotion classification. To investigate the combined effect of these features on boredom classification, we collected EEG and GSR data from 28 participants using off-the-shelf sensors. During data acquisition, we used a set of stimuli comprising a video clip designed to elicit boredom and two other video clips of entertaining content. The collected samples were labeled based on the participants’ questionnaire-based testimonies on experienced boredom levels. Using the collected data, we initially trained 30 models with 19 machine learning algorithms and selected the top three candidate classifiers. After tuning the hyperparameters, we validated the final models through 1000 iterations of 10-fold cross validation to increase the robustness of the test results. Our results indicated that a Multilayer Perceptron model performed the best with a mean accuracy of 79.98% (AUC: 0.781). It also revealed the correlation between boredom and the combined features of EEG and GSR. These results can be useful for building accurate affective computing systems and understanding the physiological properties of boredom.

Ort, förlag, år, upplaga, sidor
MDPI, 2019. Vol. 19, nr 20, artikel-id 4561
Nyckelord [en]
boredom, machine learning, emotion, EEG, GSR, classification, sensor
Nationell ämneskategori
Datavetenskap (datalogi) Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-76452DOI: 10.3390/s19204561ISI: 000497864700209PubMedID: 31635194Scopus ID: 2-s2.0-85073657062OAI: oai:DiVA.org:ltu-76452DiVA, id: diva2:1362495
Anmärkning

Validerad;2019;Nivå 2;2019-10-21 (johcin)

Tillgänglig från: 2019-10-21 Skapad: 2019-10-21 Senast uppdaterad: 2019-12-09Bibliografiskt granskad

Open Access i DiVA

fulltext(4409 kB)9 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4409 kBChecksumma SHA-512
1ab2520897340010785619a0c3141e049b2fe15f92140553bceec82433a611e3c08487266790d228599dfe842376d43ce0f2c9a7b583c01c0c4a17ce5c477f8c
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Laine, Teemu H.

Sök vidare i DiVA

Av författaren/redaktören
Laine, Teemu H.
Av organisationen
Datavetenskap
I samma tidskrift
Sensors
Datavetenskap (datalogi)Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 9 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 4 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf