Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
New Machine Learning Developments in ROOT/TMVA
Luleå tekniska universitet, Institutionen för system- och rymdteknik, EISLAB. CERN.ORCID-id: 0000-0002-5052-9629
University of Florida.
EPFL.
EPFL.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018), EDP Sciences, 2019, Vol. 214, artikel-id 06014Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The Toolkit for Multivariate Analysis, TMVA, the machine learning package integrated into the ROOT data analysis framework, has recently seen improvements to its deep learning module, parallelisation of multivariate methods and cross validation. Performance benchmarks on datasets from high-energy physics are presented with a particular focus on the new deep learning module which contains robust fully-connected, convolutional and recurrent deep neural networks implemented on CPU and GPU architectures. Both dense and convo-lutional layers are shown to be competitive on small-scale networks suitable for high-level physics analyses in both training and in single-event evaluation. Par-allelisation efforts show an asymptotical 3-fold reduction in boosted decision tree training time while the cross validation implementation shows significant speed up with parallel fold evaluation.

Ort, förlag, år, upplaga, sidor
EDP Sciences, 2019. Vol. 214, artikel-id 06014
Serie
EPJ Web of Conferences, E-ISSN 2100-014X
Nyckelord [en]
ROOT, TMVA, Machine Learning
Nationell ämneskategori
Programvaruteknik Datavetenskap (datalogi)
Forskningsämne
Maskininlärning
Identifikatorer
URN: urn:nbn:se:ltu:diva-76550DOI: 10.1051/epjconf/201921406014OAI: oai:DiVA.org:ltu-76550DiVA, id: diva2:1366548
Konferens
23rd International Conference on Computing in High Energy Physics and Nuclear Physics, Sofia, Bulgaria, 9-13 July 2018
Tillgänglig från: 2019-10-29 Skapad: 2019-10-29 Senast uppdaterad: 2019-11-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Albertsson, Kim

Sök vidare i DiVA

Av författaren/redaktören
Albertsson, Kim
Av organisationen
EISLAB
ProgramvaruteknikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 25 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf