Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Integrated CNN-RNN Framework to Assess Road Crack
Department of Computer Science and Engineering, University of Chittagong, Bangladesh.
Department of Computer Science and Engineering, University of Chittagong, Chittagong, Bangladesh.ORCID-id: 0000-0002-7473-8185
Department of Civil Engineering Chittagong, University of Engineering & Technology, Chittagong, Bangladesh.
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Datavetenskap. (Pervasive Mobile Computing)ORCID-id: 0000-0003-0244-3561
2019 (Engelska)Ingår i: Proceedings of the 2019 22nd International Conference on Computer and Information Technology (ICCIT), IEEE, 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Road crack detection and road damage assessment are necessary to support driving safety in a route network. Several unexpected incidents (e.g. road accidents) take place all over the world due to unhealthy road infrastructure. This paper proposes a deep learning approach for road crack detection and road damage assessment which will contribute to the transport sector of a country like Bangladesh where a plethora of roads undergo the crack problem. The proposed model consists of two phases. In the first phase, the model is trained using transfer learning (VGG16) to detect the existence of crack on the road surface. In the second phase, an integrated framework, combining CNN(VGG16) and RNN(LSTM), is trained to classify the crack in one of the two categories-severe and slight. After experiments, the validation accuracies obtained by the proposed models (VGG16 and VGG16-LSTM) are respectively 99.67% and 97.66%.

Ort, förlag, år, upplaga, sidor
IEEE, 2019.
Serie
International Conference on Computer and Information Technology (ICCIT)
Nyckelord [en]
Vgg16, Integrated framework, Validation accuracy, Road crack detection, Damage assessment
Nationell ämneskategori
Medieteknik
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-76655DOI: 10.1109/ICCIT48885.2019.9038607Scopus ID: 2-s2.0-85082983351OAI: oai:DiVA.org:ltu-76655DiVA, id: diva2:1368930
Konferens
2019 22nd International Conference on Computer and Information Technology (ICCIT), 18-20 December, 2019, Dhaka, Bangladesh
Projekt
A belief-rule-based DSS to assess flood risks by using wireless sensor networks
Anmärkning

ISBN för värdpublikation: 978-1-7281-5842-6, 978-1-7281-5843-3

Tillgänglig från: 2019-11-08 Skapad: 2019-11-08 Senast uppdaterad: 2020-04-27Bibliografiskt granskad

Open Access i DiVA

fulltext(904 kB)93 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 904 kBChecksumma SHA-512
1b82002b98c4b1e29724b5de01bc3c6522c6a7803edba31634d60598d1f6cd3e4b42e56271d25da9a0fad9743ae5bc0a7f7be07626116c16f9fc35ee86635ce3
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Andersson, Karl

Sök vidare i DiVA

Av författaren/redaktören
Hossain, Mohammad ShahadatAndersson, Karl
Av organisationen
Datavetenskap
Medieteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 93 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 128 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf