Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MyAQI: Context-aware Outdoor Air Pollution Monitoring System
Deakin University, Melbourne, Australia.
Deakin University, Melbourne, Australia.
Deakin University, Melbourne, Australia.
Swinburne University, Melbourne, Australia.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: IoT 2019: Proceedings of the 9th International Conference on the Internet of Things, Association for Computing Machinery (ACM), 2019, artikel-id 13Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Air pollution is a growing global concern that affects the health and livelihood of millions of people worldwide. The advent of the Internet of Things (IoT) has made available a plethora of data sources that provide near real-time information on air pollution. Many studies and systems have taken advantage of data stemming from the IoT and have been dedicated to enhancing the monitoring and prediction of air quality, from a fairly analytical angle, often disregarding the user's perspective in processing and presenting this data. In this paper, we research and present a novel context-aware air quality monitoring and prediction system called My Air Quality Index (MyAQI). MyAQI takes into consideration user's context (e.g. health conditions, individual sensitivities and preferences) to tailor the visualisation and notifications. We propose a context model that is used to combine user's context with air pollution data to provide context-aware recommendations to the specific user. MyAQI also incorporates a prediction algorithm based on Long Short-Term Memory Neural Network (LSTM) to predict future air quality. MyAQI is implemented as a web-based application and has the capability to consume data from a wide range of data sources including IoT devices and open data sources (via Application Programming Interfaces (API)). We demonstrate the context-aware visualisation techniques implemented in MyAQI, which adapt to changing user's context, and validate the performance of the air quality prediction algorithm.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery (ACM), 2019. artikel-id 13
Nyckelord [en]
Air Quality, Context-aware Computing, Internet of Things, Visualisation, Environmental Monitoring
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
Distribuerade datorsystem
Identifikatorer
URN: urn:nbn:se:ltu:diva-76721DOI: 10.1145/3365871.3365884ISI: 000545971900013Scopus ID: 2-s2.0-85076162913OAI: oai:DiVA.org:ltu-76721DiVA, id: diva2:1370572
Konferens
9th International Conference on the Internet of Things (IoT 2019), 22-25 October, 2019, Bilbao, Spain
Anmärkning

ISBN för värdpublikation: 978-1-4503-7207-7

Tillgänglig från: 2019-11-15 Skapad: 2019-11-15 Senast uppdaterad: 2025-02-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Mitra, KaranSaguna, Saguna

Sök vidare i DiVA

Av författaren/redaktören
Mitra, KaranSaguna, Saguna
Av organisationen
Datavetenskap
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 75 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf