Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Distinguishing between chemical bonding and physical binding using electronlocalization function (ELF)
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.ORCID-id: 0000-0001-5598-4703
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.ORCID-id: 0000-0003-3455-2877
2020 (Engelska)Ingår i: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 32, nr 31, artikel-id 315502Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

To distinguish between chemical bonding and physical binding is usually simple. They differ, in the normal case, in both interaction strength (binding energy) and interaction length (structure). However, chemical bonding can be weak (e.g. in some metallic bonding) and physical binding can be strong (e.g. due to permanent electrostatic moments, hydrogen binding, etc) making differentiation non-trivial. But since these are shared-electron or unshared-electron interactions, respectively, it is in principle possible to distinguish the type of interaction by analyzing the electron density around the interaction point(s)/interface. After all, the former should be a contact while the latter should be a tunnelling barrier. Here, we investigate within the framework of density functional theory (DFT) typical molecules and crystals to show the behaviour of the electron localization function (ELF) in different shared-electron interactions, such as chemical (covalent) and metallic bonding and compare to unshared-electron interactions typical for physical binding, such as ionic, hydrogen and Keesom, dispersion (van der Waals) binding and attempt to categorise them only by the ELF and the electron population in the interaction region. It is found that ELF method is not only useful for the characterization of covalent bonds but a lot of information can be extracted also for weaker types of binding. Furthermore, from the charge integration over the interaction region(s) can reveal the strength of the bonding/binding ranging from the triple bonds to weak dispersion.

Ort, förlag, år, upplaga, sidor
Institute of Physics (IOP), 2020. Vol. 32, nr 31, artikel-id 315502
Nyckelord [en]
first-principles calculations, electron localisation function (ELF), chemisorption, physisorption, binding energy, vdW binding
Nationell ämneskategori
Annan fysik
Forskningsämne
Tillämpad fysik
Identifikatorer
URN: urn:nbn:se:ltu:diva-78504DOI: 10.1088/1361-648X/ab7fd8ISI: 000533865000001PubMedID: 32175916Scopus ID: 2-s2.0-85085728971OAI: oai:DiVA.org:ltu-78504DiVA, id: diva2:1423886
Anmärkning

Validerad;2020;Nivå 2;2020-06-10 (alebob)

Tillgänglig från: 2020-04-16 Skapad: 2020-04-16 Senast uppdaterad: 2024-03-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Koumpouras, KonstantinosLarsson, J. Andreas

Sök vidare i DiVA

Av författaren/redaktören
Koumpouras, KonstantinosLarsson, J. Andreas
Av organisationen
Materialvetenskap
I samma tidskrift
Journal of Physics: Condensed Matter
Annan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 203 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf