Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Blast-induced ground vibration prediction in granite quarries: An application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN
Department of Energy Resources Engineering, Inha University, Incheon 22212, Republic of Korea. Department of Mining Engineering, Federal University of Technology, Akure, Nigeria.
Department of Energy Resources Engineering, Inha University, Incheon 22212, Republic of Korea.
Department of Physics, Federal University, Oye-Ekiti, Nigeria.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi. Department of Mining Engineering, Federal University of Technology, Akure, Nigeria.ORCID-id: 0000-0002-3838-8472
2021 (Engelska)Ingår i: International Journal of Mining Science and Technology, ISSN 2095-2686, Vol. 31, nr 2, s. 265-277Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Blasting of rocks has intrinsic environmental impacts such as ground vibration, which can interfere with the safety of lives and property. Hence, accurate prediction of the environmental impacts of blasting is imperative as the empirical models are not accurate as evident in the literature. Therefore, there is need to consider some robust predictive models for accurate prediction results. Gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS), and sine cosine algorithm optimized artificial neural network (SCA-ANN) models are proposed for predicting the blast-initiated ground vibration in five granite quarries. The input parameters into the models are the distance from the point of blasting to the point of measurement (D), the weight of charge per delay (W), rock density (ρ), and the Schmidt rebound hardness (SRH) value while peak particle velocity (PPV) is the targeted output. 100 datasets were used in developing the proposed models. The performance of the proposed models was examined using the coefficient of determination (R2) and error analysis. The R2 values obtained for the GEP, ANFIS, and SCA-ANN models are 0.989, 0.997, and 0.999, respectively, while their errors are close to zero. The proposed models are compared with an empirical model and are found to outperform the empirical model.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 31, nr 2, s. 265-277
Nyckelord [en]
Artificial intelligence, Blasting, Rock density, Comminution, Environmental impacts, Sensitivity analysis
Nationell ämneskategori
Mineral- och gruvteknik
Forskningsämne
Gruv- och berganläggningsteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-83001DOI: 10.1016/j.ijmst.2021.01.007ISI: 000623878300003Scopus ID: 2-s2.0-85101019372OAI: oai:DiVA.org:ltu-83001DiVA, id: diva2:1529422
Anmärkning

Validerad;2021;Nivå 2;2021-03-02 (alebob);

Finansiär: Ministry of Science, Korea; ICT (2019H1D3A1A01102993)

Tillgänglig från: 2021-02-18 Skapad: 2021-02-18 Senast uppdaterad: 2021-04-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Idris, Musa Adebayo

Sök vidare i DiVA

Av författaren/redaktören
Idris, Musa Adebayo
Av organisationen
Geoteknologi
I samma tidskrift
International Journal of Mining Science and Technology
Mineral- och gruvteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 255 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf