Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Application of bagging ensemble model for predicting compressive strength of hollow concrete masonry prism
Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.ORCID-id: 0000-0002-6790-2653
2021 (Engelska)Ingår i: Ain Shams Engineering Journal, ISSN 2090-4479, E-ISSN 2090-4495, Vol. 12, nr 4, s. 3521-3530Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the current research, a newly developed ensemble intelligent predictive model called Bagging Regression (BGR) is proposed to predict the compressive strength of a hollow concrete masonry prism (fp). A matrix of input combinations is constructed based on several predictive variables, including mortar compressive strength (fm), concrete block compressive strength (fb), and height to thickness ratio (h/t). Three modeling scenarios based on the different data divisions (i.e., 80–20%, 75–25%, and 70–30%) for training-testing phases are evaluated. The proposed model is validated against classical support vector regression (SVR) and decision tree regression (DTR) models using statistical indicators and graphical presentations. Results indicate the superiority of the BGR over the other models. In quantitative terms, BGR attains minimum root mean square error (RMSE = 1.51 MPa) using the data division scenario of 80–20% in the testing phase, while DTR and standalone SVR models offer RMSE = 2.55 and 2.33 MPa, respectively.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 12, nr 4, s. 3521-3530
Nyckelord [en]
Hollow concrete block masonry prisms, Bagging regression model, Compressive strength prediction, Data division
Nationell ämneskategori
Geoteknik och teknisk geologi
Forskningsämne
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-84312DOI: 10.1016/j.asej.2021.03.028ISI: 000721361200011Scopus ID: 2-s2.0-85105800543OAI: oai:DiVA.org:ltu-84312DiVA, id: diva2:1554980
Anmärkning

Validerad;2021;Nivå 2;2021-11-30 (johcin)

Tillgänglig från: 2021-05-17 Skapad: 2021-05-17 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Al-Ansari, Nadhir

Sök vidare i DiVA

Av författaren/redaktören
Al-Ansari, Nadhir
Av organisationen
Geoteknologi
I samma tidskrift
Ain Shams Engineering Journal
Geoteknik och teknisk geologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 46 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf